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3.10 Electron density of states inside quantumwires.The electron energy

in an infinite potential barrier quantum wire can be expressed as 4

is gsually very large, and at any instant, the
Although our mathematical treatments in the

electron effective mass equals the free electron mass. l

3.12 Phonon density of states. Assuming that phonons of a three-dimensional

obey the following isotropic dispersion relation,

E (k., t, n) : # . #lt+l' . erl
where l, n can take integer values l, 2, . .,, Derive an expression for the

density of states and plot this expression for L, - Lz : 50 A.

lx l. n"lr't:2!; lt"Tl
where a is the lattice constant, derive an expression for the phonon density

Statistica I Thermodynam ics
and Thermal Energy Storage

.quantum mechanics principles covered in the previous two chapters give the.
The number of allowable states in typical macroscopic

states. ':

3.13 Debye approximation Derive an expression for sound velocity from eq.

Calculate the sound velocity for a monatomic fcc crystal along (100) and (11

directions, using this simplified expression. Assume that the mass of the atom

9.32 xl0-23 kg, the lattice constant of the conventional fcc unit cell is 5'54

10-10 m, and the spring constant is 7600 Nm-l.
3.1 4 Transverse and longitudi1tal phonons . Consider three separate acoustic

in a three-dimensional isotropic medium'with an effective lattice

of2.5 A. The dispersion for each branch is aL : uLk, @t : utk (degenerate)'

For ur 8000 ms-l and u1 : 5000 ms-1, plot the density of states as

function of frequency.
3 .1 5 Size fficts on density of states. The density of states expressions we derived

valid when the separations between states are small and the number of states

large, such that we can calculate the number of states by eq. (3.50). In

previous two chapters were basedth@t the energy states and the wavefunc-

matter can be at any one of these

geometries, the energy separations between
, number of states at eaih energy level can be

different states can be large and

small, so (3.50) is no

valid. As an example, consider a cubic cavity of (2 size. Find out

matter

its allowable quantum states. The

thermodynamics, tgmperglulg-rulprslnlothe picture of

that eq
pm)'

many states are allowed to exist inside the cavity for electromagnetic waves

a wavelength in the range of 0.5-1 plm, using the following two methods:
(a) by finding out how many sets of (kr, ftr, &.) are allowed in this cavity that fall

into the given wavelength range;
(b) by integrating eq. (3.59) over the given wavelength range.
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a system ale

ata fixed rather
ovef a

period system' fundamental

This

necessaly for this hYPothesis to be valid is an ongolng area

et al., 1998). Our analYsis will assume that all systems are ergodic.
each has a

In the followiltg' we will discuss three ensernbles:
canonical, and

canonical ensembles'

4.1.1 Microcanonical Ensemble and Entropy

Unlike classical thermodYnamics, which comPletelY neglects the microscoPic

.states (Kittel and Kroemer' 1980; Callen' 1985). We
and a

4.1 Ensembles and Statistical Distribution Functions
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Fiqure 4.1 A microcanonical ensemble is made of isolated systemg with fixed u, v' and N.

eich system corresponds to one accessible quantum state of the original system.

statistical mechanics is that an isolated

O is the total number ofaccessible quantum states, the probability

of each accessible quantum state, denoted.by s, being samPled is

P(s): 1/A (4.1)

(x) : I P(s)X(s)
s:l

Note that the summation is over all accessible quantum states.

Because each accessible quantum state is a state of the system that satisfies the

macroscopic constraints and each one has equal probability to be sampled, we are

bffectively dealing with a collection of Q stationary systems, as shown in figure 4.1

systems are identical from the macroscopic points of view; that is, they have the

U,V, and N and are all isolated from their surroundings. This collection of Q

qystems is called an ensemble
m a rucro-The

Later, we canonical and grand canonical ensembles

of each system in such ensembles on the basis of results

obtained from the microcanonical ensemble. Equation (4.2) means that each of

stationary systems in the ensemble is sampled once in the computing of the aver-

Such an average is called the ensemble average. For a microcanonical ensemble,

= 1/Q, thus

, {x) -fx1';7o
s:l

quantum state in an isolated system

seem umeasonable for some readers' For example, for a system of I023 particles,

accessible quantum state might be that one particle has energy U and the rest have

(4.2)

energy. This distribution of energy among N particles seems to be a quite unlikelY
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event but the PrinciPle of equal probabilitY states that such a state is just as probable

as any other quantum states, for example, a state io which each Particle has an energY

U/N (assuming that such a state is also accessible). The latter is Perceived to be more

likely. This concern can be resolved by noting that there is usually a large number of

accessible states close to the latter case (large degeneracY) so that an actual observation

would most likelY samPle one of tJrese high-degeneracy states'

determined the number of accessible states Q of an isolated
Suppose that we have

system with fixed U,.V, and N How can we relate I to

qsanljfiqq? For a microcanonical we rarelY use eq to

average quantities. Rather' we a crucial link

(1844-1906), who Qis

(4.4)

where is the Boltzmann constant (= 1'38 x 1o-23 JK-1).Equation (4.4) is calledthe

This

state's, the more

ithas,

thatmakes the classical ofentroPY

consistent with definition while

accessible states, the total number

of accessible states of the system is then Q1 x Q2. Equation (4.4) leads to S : St * S:,

satisfying the additiveness of entropY

constrained IJ,V, and N, we anticiPate that it is a function of these

If we know the above function, we can construct

the system. For examPle, eq written ascan
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t!ry$:$u" grygg.t-ie,s-*cgr 
-bg . &e-feg*kg of- a rhermp-df namiq potentigt. For

example, aknown function of entropy,s(7, p, N) with z, p, N as variables does notgive
all the other thermodynamic properties of the system and is thus not a thermodynamic
potential. In the next section, we will examine two other types of ensemble, each leads
to the construction of a thermodynamic potential that gives a full description of the
macroscopic thermodynamic properties of the system.

4.1.2 Canonical and Crand Canonical Ensembles

In practice, we are often more interested,in

obtain the ata
of constant N

see_thqt because of the change of constraini from t0 r,the probablllty of
observing each accessible quantum state Sno Joneer identicql as in a microcanonical
ensemble.

(4.s) in figure 4.2. In such an ensemble, the total numberof
accessible

dS: AS

)
as

) )du+ dv+ dN
ANAU av U,N Qr systems. Each of the systems in the new ensemble is an accessible quantum state

of the original system with macroscopic constraints of constant T , V, and y'y', as shown
in figure 4.2(b), and is in thermal equilibrium with a common reseryoir.

chance
to each

would to the
;: (#)",,,#: (

as (4.6)

of finding a system

where p is the chemical Potential' means that if we know the function at a specific accessible quantum state with an energy E;. Let's assume that there are
state Qr(Ut - Ei) accessible states in the reservoir conesponding to this specific system

s

to realize that a
v

It-is important

(4.6)

combination of

1S
' state. The probability of observing the system is then



: STATISTCAL THERMODYNAMICS AND THERMAL ENERCY STOMGE 129

If .U.is the a!'erage energy_qUhg-gigilg!_qys!9!0. then the total entropy of the old

combined system is

&(Ut):S,(Ut -U)+S(U)

By a Taylor'expansion, we can express ,Sr(Ur - Ei) as

' ,Sr (U' - E) : S'[(Ur - U) + (U - Ei)]

:Sr(Ur-4+gl
d Lr lu,_u

U-Et:S,(Ut-U)+- r-

(4.11)
Ut-U

Substituting eq. (4.10) into eq. (4.8) leads to

fU _TS1 I E,1
P (Ei) : exp 

L "", J 
*p L-,.r?J V @.12)

i

where we have used S(U) : St(U) - S,(U, - U),thatis, eq. (4.9), to eliminate the

entropy of the thermal reservoir. We recognize that F : U - TS is the Helmholtzfre_e
?ilergy of the system-a thermodynamic potenlial withnatural-vari-ab]qs.of T. : 

*

Given F(7, V, N), we can calculate all other thermodynamic properties of the system.
riVe use the pro,bgrbilitr.rcru0dizali,oar€quirear€+tlo-fi.EdEr

J- rrr,) : *p l+'l )-"*p l-4.l = t $t3)L- r",, _.., 
L*aT ) L *uf J_ 

_

where the summation is over all the accessible quantum states of the system. Equation
(4.13) gives

where we have applied eq. (4.6) to the new combined microcanonical.ensemble,

where Z is called the canonical partition function

z - lexp

eq. (4.14) into eq. (4.12) leads to the piobability of a fixed V,

(4.10)

(4.14)

(4.1s)

F(7, V, N) : -rcnT lnZ

P(E): e-Ei/kBr /Z

state
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For example, the Arrhenius law governing chemical reactions is a manifestation of the

Boltzmann factor.
A similar analvsis can be extendedto consider

we know that

The variables for such an ensemble are

given by

(4.17)

S(7, V,6r) :
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substituting eq. (4.20) into eq. (4.15) leads to rhe canonical partition function for the
ffanslational motion of one gas molecule,

,t To evaluate the above triple summation, we first notice that ytrzhz 11Zmt2qT)l n
ilie exponent is a very small number such that the exponential function is slowly varying.
Second, nr, nr, and n, are integers spaced by Ln, (or Lnr, Lrr) - 1. Due to ttr. 

"tou"two reasons, the summation can be well approximated by integration,

z :T T T ""^l n2n26]+n2, +"?)1 .i L-! 
! !"*Pl--ffi)dnxdnrdnz. 00

. /2ttmrc8713/2 V:; :r\-f) :F 9z3)

oo@oo'z:D I I*n
nx:I nr:l nz:l

r2n2@?+n3+n7)
2mL2rcnT

(4.22)

-
wherey:exp(p'fKBT)andthedoublesummationisoverallaccessihle.energystates
and number of the partictes of the system. The grand canonical potential is

, G(T,V,lD:U-TS-tr'r'N=-16?lnS (4'19)

where u and ,N are the average'energy and number of particles of the system,

respectively.

4.1.3 Molecular Partition Functions

The above discussion shows that if the

nanuc ofa can be consequentlY all

We discuss below the partition function of gas

F-_" - 2*L2

and the density of states per unit volume is

(4.18)
whereV:13and

(4.24)

is caLled the -th,ermal de Bro slie wayd
Another way to arrive at the same answer as eq. (4.23) is to realize that the triple

summation in eq. (4.22) is essentially sampling alithe quantum states. ro_g_rt.yty
Varying exponential. we can convert this
i+tgeration over allowable enerevlerg!$ qgius_ the!g!,si!y:e:f-sl!41!qqt

E_---;
KBI

exp D(E)dEZ:V I
0

@

:V 
J
0 ainT (4.2s)

which is identical to eq. (4.23)

ltryi,ttTit because the total energy ofa canonical system is not a prior constraint of
can.take any value. From eq. (4.15), we can write the canonical
this N-molecule system as

_Er*Ez*".*Ex
'rcpT(D(E): fiQ*/n\3/zntrz nrl,nyl,nil nr2,ny2,nzz flyl'! lnyt! ,f,4N

(4.26)
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where each summation is over all possible states of molecule i as determined bY indices

(nx;, nyi,n 1;) with sPecified values as in eq. (4.22).

(4.27)

the gas system:

F(T,V,N) : - rcyT lnZY : -N rc37

: *rrT(NlnN-N)
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A monatomic molecule has three degrees of translational freedom only and the energy

is in quadratic form, as eq. (4.20) shows. Each quadratic term in energy contributes

rcnT 12, and thus, we have an average energy of 3rc6 T /2 for each molecule.

For a polyatomic gas. the enerqy level of each moleo,le can he separated into

translational, vibrational, rotational, and electronic cor,nponents:

E=EttErlErtE" (4.3r)

tand the corresponding partition function is

: z:le-E/rctr 
:

: I e- E, / * ar I e-E, / rnr I e- E, / *nr I e-E" / * nr

: ZtZrZrZ"

NANOSCALE ENERGY TRANSPORT AND CONVEF

o:-(#),"

(4.32)

N! t NlnN - N' This aPProxi-
where we have used the Stirling approximation: ln

mation is valid when N is large, wirich is typically the case. with F(?, v, N) known'

all other thermodynami" qo^ititi", of the iystem can be obtained. For example, from

dF : -S dT - p dV + lL dN, we can calculate the pressure as

wherc Zt, Zr, Zr, and Z" arc the canonical partition functions for each energy compo-

nent of the molecule as represented by the conesponding subscripts. Once the partition
function for one molecule is known, the canonical partition function for a dilute system
of N molecules can be calculated from eq. (4.27).

Before concluding this section, we present a criterion that determines when the dilute
gas limit, which leads to the factorial N! in eq. (4.27), is valid. The requirement for
'this limit is that the number of quantum states for one molecule is much larger than
the number of moleculEs in the box. Thus if the number of quan

'rYlolecules 
ler rrnit vnllrme, fhen the dihlfp gas qscilmFtion should he valid', in Othef

words,

3rpT /2

(4.33)

where the left-hand side is the number of quantum states with an energy between zero
and3rcp ) into eq. (4.33) and carrying out the integration, we

assumption to be valid as
rcaTN (4.2e)

and the intemal energy can be calculated from

i.i

6N ( hz \'/' -.. N 1nf/z 
^nv\t2mrc6r) "t*iG)'-13<<1 

(4'34)

the intermolecular distance is of the order of (V / W1t /2, eq. (4.34) also means

Ei exp (-Ei lrcnT)

: rcBT2

The last two equations should be familiar. Equation (4-29) is the ideal gas law that

applies to dilute gas. Equation (4.30) is equivalent to eq' (1.28) and lsa special case of
'r Example 4:1 Canonical partition function

', the equip artition theorem, which says that, at high temPerature, every degree of freedom

the thermal de Broglie wavelength must be much smaller than the intermolecular

Derive an expression for the canonical partition function of the rotational modes of
a H2 molecule in a box of H2 gas.

with a quadratic energy term contributes rc6Tl2to the average energy of the system.
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Solution: We have obtained in chapter 2 the energy' eq' (2'65)' and degeneracy'

eq. (2.66), of a rigid rotor as

*2 r:

nt:fiut+D +r@+ l)(l = 0,r,2, "',lml < t) {e4'l'l)

g(I) :2t * 1 (E4.r.2)
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appropriate ensemble for the new system is theffi The grand
canonical partition function for the new system can be evaluated from eq. (4. I g),

,l'li ''r; Lr " A I

. 
*.: s (2, V, tr) : f t,*,2,: I * exp (+\ (4.35)

ir.-' .- iy]-=o -\rBr /i i:" *. i .

where 0 means otttnfirm state is unocctrnied with sv(tem cncrov
: I means that with

eq. (4.1 .tle_prob4bjlily that this quantum state is empty or
at E. According to

where / and nt arcthetwo quantum numbers of rational wavefunctions, arid B is the

rotational constant. The canonical partition function for the rotational modes is
1

EtZ,:lexp : f s(l)exn
KBT t=o

(- (
Et

)

P(Ei- 0,N,:0)--Ps:
r f exp (#)

(occupied) (4.37)

T-he averaee nUmbE of-occr+ 'm *tate.ig thus

ln):f(E):0xP(E :0, Ni : *1xP
(4.38)

(4.3e)

this distribution function. Recall that pc is the chemical potential.
is a few ?smaller

indicating that most of the energv states below the chemical
When the energy fi'a few times of rs Z larger than the chemical

function is close to zero, indicating that most states above the

(2{ * l)exP
Bhr({. + L)_._._.=-

KBI

1(84.r.3)

@4.r.4)

(84.1.s)

a more
and other

where 0, is called the rotational temperature

'4

'- *B 8nzrcgl

In eq. (E.4.1.3), the first summation over all I and m is over all quantum.lll:t *d
thesecondsummationoverlisoverallenergylevels.Similarlytoeq.(4.23)'we
have convdrted the summation into an integral' 

l

Comments.For hydrogen, B : 1.8 x l0rz Hzarrd0' - 85'3 K' The transformation

r .q. iB.+.f.S) frorn itt" summation into the integral is valid only when T is much

t*g". it un Br, it at is, when cha nging tby I does. not change the exponential rapidly'

Soleq. (g+.r.+) is valid only for i >J g'' n trtt [mit' when ? is comparable to 9' or

t*ALt, we can take the first few terms of the summation to get

".p(#)+1
'dnd lhe averase etrerg], of this quantum state ir

tlr .. (E) :0 x P(Et: 0, l{, : 0) * E x P(E;: E, 14 : 1)

4.1 .4 Fermi-Dirac, Bose-Einstein, and Boltzrrann Distributions

Let's now consider

assume that

system. From the

If the

potential are empty. Because
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.0.05 0.05 0.1
-0.1

E-p (ev)

Figure 4.3 Fermi-Dirac distribution as a function of the electron energy relative to the

chemical potential.

and, correspondinglY , neither is the chemical potential'

hv(n=
a similar argument as for electrons,

our new system and the states to be

thermodYnamic variable. the new

is best described

0
0. 0.2 0.3

FREQUENGY (xl011 Hz)

Figure 4 .4 B ose-Einstein distribution as a function of the frequency of the carriers (phonons and

photons).

where we have neglected the zero-point energy, which does not participate in heat

ffansfer processds.

gthei boson svstems, such as gas molecules, gan have a fixed number ofparticles.
For such bosons, we should use the g"a tne as for fermions, and the

Bose-Einstein distribution can be written as

(4.M)

0.4 0.5

(n * ll2) hv ( *n(#)-'
where p is again the chemical potential of the boson gas.

The Bose-Einstein distribution changes the "plus one" in the denominator of the

distribution into minus one. In the limit of low occupancy (high energy
high temperature), both Bose-Einstein and Fermi-Dirac distributions reduce to the

) )1 - exp (-*

P(v, n) :

and the number of the

distribution function

/ E-u\ / E
f@,r,p):expl ----_ | or f(E) -expl --^\ rcnT / '\ rcaT

(4.4s)

distribution function is considered as "classical", while the Fermi-Dirac and llose-
distributions are "quantum." Thus, for the statistical distributions, difference
"classical" and "quantum" statistics lies merely in the "one" of the denominator!

4.2 lnternal Energy and Specific Heat

(E) = hvf (v)

the quantum state ls

and its level. With the distribution functions, we can investigate
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energy levels are high and that their separations are large. so we can take the fust term
only of the electronic partition function

Ze: Bet*r l-g+] t gs2expl-#l+... ry 8e, exp l-#J G.sz)L KBT

where Er; is the ith electronic energy level and g"i is the degeneracy for that
energy level. From eqs. (4.27) and (4.32), the canonical partition function for N
molecules is

2,. - 
(ZIZ,Z,Z)N

:.. 'N: -----t! 
- 

(4'53)

and the average internal energy of the molecule, according to eq. (4.30), is thus

u:*nrzfil"(*#u)]
= rcar2N 

{#n" h + #enz,) +
al+_;(ln Z,) _ (lnN _ 1) 

'r, 
-a? t @.54)

The volumetric specific heat can be obtained by taking the derivative of u with
'respect to T at constant v. The translational energy contribution to the specific
heat is given by eq- (4.47). The erectronic energy lever contribution to the specific
heat is

NA r "a I
i n l*nrVnz"1

4.2.1 Cases

For a dilute monatomic gas, the total internal energy is given by eq' (4'30)' Consequently'

the volumetric sPecific heat is

cv : itUr"* $'47)

SincethenumberofmoleculespermoleequalsAvogadro'SconstantN,l:6.02x
;P;i T, il; qp".ifi. ltt" per mole for a molalruc gas is

3?
,v : )*nNe: 

"rn (4'48)

where R(: rcnNe - 8.314 J K-l mol-l; is the universal gas constant'

Foradiatomicgas'weshouldconsiderthecontributionsfromtherotationaland
vibrationalstates.Wealreadyhavefromeq.(E'4.1.3)therotationalpartitionfunction
of one diatomic molecule,

co

z,:L(2t l-l)exp
l:0

we will consider next the vibrational partition function. The vibrational energy of a

harmonic oscillator was deriVed in chapter 2 as

The vibrational partition function is thus

Z,:lexp (_!w#tz)
exp

s,,
zt

-0 (4.s5)

result is because the electrons are only sitting in the first energy states and their con-
to the total system energy does not change with temperature. The contribution

of rotational energy states to specific heat is

(4.56)

knoq from eq. (E4.1.3), that the summation in the above equation is proportional
Tl0, atfughtempeiatures. In this limit, the contribution of the rotational energy level

specific heat is

a

Cv,, : N rc p / V (athigh temperature)

manifestation of the equipartition theorem.

(ln Z,)

(4.s7)

A diatomic moiecule

AT

qrL(t + l)

n:0 exp

where gy - hv f rcB is called the vibrational temperature.

In addition, the molecule also has electronic energy states. From the solution of degrees of rotational freedom. So at high temperatures, when the rotational

result is again a

electronic energy levels in chapter 2 for a hydrogen atom' we know that the are fully excited, each molecule contributes 2 x KBT 12 : rBT to the avemge
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) heat must be calculated from the
energy. At low temperatures, the rotationdl specific

full rorational partition r"*ir", r" ,rre summarion format, eq. (4.56). Similarly' the

contribution of the vibratio;"i """tgy 
state to the specific heat is

_ rcpN ol eo'lr (4.58)Cv.,: v Fre;n_rt
At high temperatures, the above formula leads to

cv.u * g- (4's9)
v ,t0'

TEMPERATURE (K)
Figure E4.2 Specific heat of H2
gas as a function of temperature.

which is again a manifestation of the theorem. After obtaining the con-

tributions from all the energY modes, we calculate the total sPecific heat of a diatomic

molecule bY summing each of the contributing terms: CY : Cv,tlCv,r*Cv,r-l 4.2.2 Electrons in Crystals

Now we investigate the specific heat of electrons in a crystal. We assume that the electrons

have a parabolic band with an isotropic effective mass

52 ^ ') ,1,E - E": ,*(ki + k; + k;) (4.60)

-We 
obtained the density of states in chapter 3, eq. (3-52),

I /2m*\3/2D(E):F\;) (E-Est/z s.6t)

;The total number of electrons per unit volume is thus

m

The fotlowing examPle shows

ExamPle 4.2 SPecific heat

The rotational

temperature is

temperature.

per mole of a diatomic gas as

higher temPeratures, the

heat, which aPProaches a

more numerical details'

c\:

of a hYdrogen molecule is 85.3 K and its vibrational

the specific heat of hydrogen gas as a function

J
=-2

cv

R

(4.62)

From eq. (4.62), the chemical potential as a function of temperature can be determjned
for a given n. For T = 0, the above relation leads to

9,4.2.1

The last term in the above gquation can be written as

z,L^2t+De(.+D2 exp
0,tQ+t)

T LrQt + 1X(l + 1) exP
0"eQ+r)

,... Wehavealreadyobtainedthisrelation,eq.(3.53),inchapter3.Thechemicalpotential
p at T : 0 is called the Fermi level, E y .* At other temperatures, eq. (4.62) cannot be
explicifly integrated. However, when (E - 1t) / fuT )) l, which is the classical limit, we
can use the Boltzmann distribution as an approximation of the Fermi-Dirac distribution.

.Equation (4.62) canbe integrated explicitly,t ..'

l2
I

Q" - E")3/2 (4.63)

A computer Program is used to carrY out the above sunrmatlon' Figure E4.2 Plots

the variation of cYlR with temperature. At low temPeratures, only the translational

energy levels are fullY excited and the sPecific heat is 3R/2. As the temPerature

increases, the rotational energY levels become excited and contribute to the

heat uP to a maxlmum ofRso that the total sPecific heat reaches 5R12.

vibrational energY levels start

[" 
*- (+#) # ff)''"' -'' "" /2 dE : *' "* (- #)

q=85.3 K

ev=6332 K

final value of '7 Rl2

contributing to the

even

ii:1,n =

(4.64)
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Nc:z(2""f,r\zrz (4.65)

Equation (4.64) is often used to determine the chemical potential level in doped

semiconductors, as will be seen from the following example'

Example 4.3 Chemical potential level in doped semicondt'rctors

Silicon is a widely used semiconductor material, and it is often doped with phos-

phorus to form an n-type semiconductor. Determine

n-type semiconductor doped with phosphorus with a

the chemical potential of an

concentration o1 1917 
"*-3

at 300 K, assuming that every phosphorus atom contributes one free electron to the

conduction band and neglecting thermally excited electrons from the valence band.

Although the silicon conduction
be approximated by an isotroPic

m is the free electron mass.

bands are not spherical [figure 3.1 8(b)1, they can

band with an effective mass equal to 0.33m,

Solution: Silicon has six identical conduction bands [figure 3'18(b)]. When counting

all six bands, eq. (4.64) should be written as
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inside the conduction band, which is the case when the semiconductors are heavily
doped, we need to carry out numerical integration with the Fermi-Dirac statistical
distribution.
2, The value of the chemicar potential needs a reference point. Equatio n (4.64)
suggests that it is the relative difference betw een p, and. E 

" 
that aetermines the electron

number density, and thus this difference is the value of the chemical potential. In
chapter 6 (figure 6.9), we will give a more detailed discussion on tie reference
point issue.

u (r) : I tfrr, r, p.)D(E)dE

oo

Ec

f @,r, p.)D(E)dE: constanr

n:t2Pft)''' "*r( o-) tU@= 
J @-Eflf(E,T,p.)D(E)dEtEyn, (4.68)

0

where E 7 is the Fermi level (p at T : 0 K). In eq. (4.6g), since only / is temperarure
dependent, we obtain the heat capacity of the electron system as

f ," - r,,LtgieD(E)dE
0

We can use eq. (4.67) to rewrite eq. (4.66) as

rc

c"-

KB

(E4.3.1)

(4.66)

(4.67)

(4.6e)
11 - E"

rcnT

Taking n : lQ17 .*-3, we can find the chemical potential as

1

lo23 2r x0.33 x 9.1 x 10-31 x 1'38 x 10-23 x 300
Tlpically, dfldT is nonzero only in the region close to the chemical potential. Ifthe

ldensity of states does not vary rapidly around /r, we can use its value at E : p and pull
D(,a) out of the integration. In addition, the change of pc with temperature in metal is

small because Ey is very large. We can thus neglect the temperature dependence
,of pc and set p, 

^r 
Ey. Under these approximations , eq. (4.69) becomes

fn - nr1df 
(\-T' r") ou

(E_E )(E - p) "*p(#
[".r (ffr) + r]

:ln

Thus

comments. 1. The negative sign means that the chemical potential is

the conduction band edge. The silicon bandgap at room temperature is 1.12

Thus the chemical potential level is within the bandgap. In fact, only in
case, the Boltzmann approximation we.used in eq. (4.64) is applicable

the electron energy inside the conduction band, minus the chemical

I

is much larger than rc 3T .lf the chemical potential is close to the band edge or

m
^a-. I x'c^r) I @a1yax

-Ey /raT

(4.70)
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Using eq. (3.57), the specific heat can be further written as
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Since E y I rc nT is very large, the above integral can be wa\1ted by setting the lower

riJ," l*,reaoing io *rJfoilowing exPression for the specific heat :

where TJ : Eflrcn is called the Ferm.i temperature' ln deriving eq. (4.71), we used

the relationshiP ne :2E f D(E fl13, which can be obtained from eqs' (3.52) and (3.53).

Thus the heat of

4.2.3 Phonons

4.,2.3.1 DebYe Model

leq. (3.55)1,

(4.77)

^. a50rt'KB

15
(4.78)

Generally, the Debye temperature is unknown and the above expression is used to
calculate the Debye temperature from experimentally measured values of specific heat.

If the Debye model is accurate, a single value of the Debye temperature should be able

to fit all ofthe temperature-dependent specific heat data. Such a situation happens rarely,
however, and the Debye temperature is sometimes given as a function of temperature.

This temperature-dependent Debye temperature is because the Debye model assumes

a fnear dispersion, which is not valid fol phonons close to the boundary of the first
Brillouin zone. In particular, it is completely wrong for optical phonons, for which the
Einstein model is more appropriate, as we discuss below.

4.2.3.2 Einstein Model

Einstein's model assumes that all phonons have the same freqrlency aE and is thus more

,appropriate for optical phonons. We assume that there are Nl states; that is, N/ is the
number of lattice points or primitive cells for each optical phonon polarization.* The
total energy of the crystal per unit volume due to the contribution of the optical phonons
with a frequency rdE is then

U:Np N,f (7,
(4.7e)

V[exp(h@s/rcnT) - l]
where the factor No accounts for the number of polarizations.of optical phonons at this

The specific heat per unit volume is then

haf (T, o)D (a) d(0: --:-';
2tzu'o

and the volumetric specific heat of phonons can be calculated from

ffi6-"t"

'' 
DebYe velocitY u2' and

From eqs. (3.56) and (3.57), the Debye frequency @'

temperature e D Ne telated through

' \tvD . KB9D
0)D: 

- 
: -T-AD rt

where4DistheeffectivelatticeconstantundertheDebyemodel.Substitutingeq'(4.1
into eq. (4.74), we get

(4.80)

The contributions of other optical phonons at a different frequency can be similarly
At high temperature, both the Debye model and the Einstein model lead to

same result, as required by the equipartition theorem because the oscillator.has three
and each direction has two degrees of freedom (kinetic energy plus potential

Clearly, the Debye model will be more appropriate for acoustic phonons and the
model for optical phonons. At low temperatures, acoustic phonons are normally

+Notice that this N/ is different from tV in the Debye model, in which all phonon modes (inclLrding the

C_

dD
f hasda
I
I exp(hr't/rcnT) - 1

0

'f l,,aexp(halrcaT) - o,
J I"*p (halrcBT) - ll'z
0

^ AU ^, N' (haB/rBT)z exp(haB/rcsT)
- AT - Y'-" V fexp(has/rcpTs) - ll2

2r2(apa;p f n)3 rcs

='#(#)' x4e'dx
----._=
(sx - l)L modes) are lumped as three identical acoustic modes.
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Figure 4.5 Estimated contribution of different phonon branches to the specific heat of

(Chen, 1997).

excited, so the Debye approximation is more appropriate' At room and higher

tures, both acoustic and optical phonons are exeited and a combination of the two

is more appropriate. Figure 4.5 shows the estimated contributions of different

polarizations to the specific heat of GaAs (Chen'

was assumed for the acoustic phonon dispersion.

1997).In this figure, a

4.2.4 Photons

Photons are bosons and obey the Bose-Einstein distribution. we have obtained

photon density of states in a three-dimensional cavity in eq' (3'59)'

interval is
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Equation (4.83) is the Planck blackbody radiation law, expressed in terms ofper angular
frequency interval. In terms of wavelength, we have

i.t I7-
1.'

where C1 : 2nhc2 and. Cz

in eq. (1.9) can be obtained

ex.= n It . Integration of eq.

toial photon energy density

- ldal Ct lr
l..l-l: a-___jJ___- ldLl ),5[exp(C2/),7) -t]

U:loTa

: hc/rca. The blackbody emissivity power that is given
easily from the above expression for intensity through
(4.82) for frequencies ranging from 0 to oo leads to the

. 400

350

6i 300

E
I 2s0
rrl
q

o 200
a
H

! tso

a
100

(4.84)

(4.85)
c

200

{vhere o1: 5.67 x 10-8 Wm-2K-4) is the Stefan-Boltzmann constant. The total
intensity is

(4.86)

the blackbody emissive power is thus

eb:nI:oT4 (4.87)

16oT3

c
(4.88)

vihich has the same temperature dependence as the qpecific heat of phonons at low
temperatures [eq. (a.78)].
lri ,

Example 4.4 Electon and phonon contributions to specific heat

The Debye temperature of gold is 170 K and its Fermi level is 5.53 eV. Compute the
heat of phonons and electrons in the temperafure range of 0-1000 K.

solution: The phonon and electron contributions to specific heat are given by

Phonon: C:9rcn x4 e'd.x

@r:E

0o/T

I(#x
Electron: C" - lo'rr*aT /Tr

lGold has an fcc structure with a lattice constant of 4.08 A, and the number of
per unit cell is 4. Each atom contributes one valence electron. We have

= N/V:4l@.0q3 x 10-30 m-3. TheFermi temperature 77 Ey/ka:64,

o LISTED VALUES (Adachi, 1993)

OPTICAL PHONONS

.-oCJ
-y-.:.-----"

o o

TOTAL

O o

SPECIFIC

O o

HEAT

C)

_TBA!$yEB$ESS.o-u.sJLc.PJl9t{9}-{S

LONGITUDINALACOUSTIC PHONONS 
- _

---':;:---;i

+See section 6.1.3 for a more detailed explanation of intensity' Substituting these numbers into the above expressions, we obtain the phonon



and electron sPecific heats. The volumetric sPecific heats are converted into

specific heat (c : C/P) and plotted in figure E4.4. We observe that

specific heat is tYPicallY much smaller than the Phonon specific heat, except at

low temperatures.

4.3 Size Effects on lnternal Energy and Specific Heat
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1,10100
. .t'

lFigure4.6 FxperimentalspecificheatofanataseTiO2nanotubes(fourkindsoftubessynthesized
under different conditions) and that ofbulk TiO2 (Dames et al., 2004). Insert shows transmission

' electron micrographs of the nanotubes.

on zero-dimensional (0D) metallic nanoparticles of -2-10 nm diameter, where experi-
(Novotny and Meincke, 1973; Chen et al., 1995) show a specific heat enhanced

50-r00vo at temperatures where the average phonon wavelength is comparable to
diameter of the nanoparticles, an exponential decay at lower temperatures, and an

glYmptotic return to bulk values at higher temperatures. These results have been success-
fully explained by theories that sum over all of the normal modes of an elastic sphere
with free boundaries (Baltes and Hilf, 1973; Lautenschlager, 1975; Nonnenmacher,

-197$, For anatase nanoparticles, wu et al. (2001) reported enhancementby 20To for
of about 1 5 nm diameter between 78 K and 370 K. In fi gxe 4.6,we compare the

data on the specific heat of compacted titanium dioxide (TlO2) nanotubes
that of bulk TiO2, and show that the nanotubes have higher specific heai at low

(Dames eta1.,2004).

(MW) CNT, in close agreement with isolated sheets of graphene. In contrast,
another IvIWCNT experiment by Mizel et al. (1999) showed a much steeper
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Figure E4.4 Phonon and

electron contributions to the

sPecific heat of gold'
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temperatures of about I2'5 down to -l K, a better match to graphite. Bundles of
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single-walled (SW) CNT were studied by both Hone et al. (2000) andMizeletal. (1999),

and exhibited a linear or slightly superlinear temperature dependence from -100 K
down to -24K. At lower temperatures, Lasjaunias et al. (2003) reported a transition
to 13 attributed. to the filling up of inter-tube modes, plus a surprising additional term

proportional b 7wa * 70'62 below -l K that was qualitatively attributed to localized'
excitations of atomic reanangement as in glasses and amorphous materials. In all
these CNT, the specific heat is bounded between that of graphite and graphene. Various

theoretical efforts have had mixed success at explaining these MWCNI and SWCNT
measurements by extending isolated tube models to include the effects of
coupling (in MWCNT) and intertube coupling (Mizel et al., 1999; Hone et al., 2000;

Zhangetal., 2003). Overall, more work is needed to reconcile the diverse experimental

results with theory (Dresselhaus and Eklund, 2000).
In comparison with phonons, we anticipate that the specific heat of electrons will have

a stronger size dependence, due to the following factors: (1) the energy quantization of
electrons is more dramatic than that of phonons; (2) the specific heat also depends ci
the Fermi level, particularly the rate of change of the density of states at the Fermi
In our derivation of the electron specific heat in metals, we assumed that the density

, states does not change much near the Fermi level. For nanostructures, the sharp

in the electronic density of states suggest that this assumption may not be valid.
existing studies show that the specific heat is a strong function of the size (Ghatak

Biswas, 1994;Lin and Shung, 1996).
For photons, we are not interested in the specific heat but rather in the energy

or emission spectrum from small objects. Since thermal radiation can have relatively
long wavelengths, the issue of size effects on the energy density ofthe
from a small object has been studied for various geometries (Rytov,

1989). One interesting question is whether the thermal emission from any structure
any specific wavelength can exceed the blackbody radiation given by the Planck
For example, the density of states in photonic crystals can be very different from that

free space. It can be inferred that in the frequency region where the photon density

states of the photonic crystal is larger than that in its parent crystal, the energy

of the thermal radiation inside the photonic crystal can exceed that in its parent

However, not all of the energy can be emitted into free space since the density of states

free space is limited,by eq. (4:81), and thus the maximum emissive

space is the blackbody radiation. There are, however, some recent
of the far-field thermal emission from photonic crystals being larger than that of
blackbody, although the physics is not clear (Lin et al., 2003). At small scales,

radiative heat exchange can exceed that between two blackbodies due to the
of evanescent and surface waves (Polder and Van Hove, l97l; Tien and
1973; Pendry, 1999; Mulet et al.;2002; Narayanaswamy and Chen, 2003), which

of particles with a diameter comparable to the wavelength can exceed I because of
diffraction effect (Bohren and Huffman, 1983).

4.4 Summary of Chapter 4

Through statistical mechanics, this chapter estabtshes the link between the

states and temperature for a system in equilibrium. A system in equilibrium
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rapid transitions among accessible quantum states as a function of time. A fundamental
assumption in statistical mechanics is that, in an isolated system, every accessible
quantum state has an equal probability of being sampled by the system. Because it is
hard to follow the time evolution of the system; we use an ensemble average to replace
ihe time average for quantities of interest and assume that the ensemble average equals
the time average. This assumption is called the egordicity assumption. An ensemble is
made from a collection of systems, each of which is one accessible quantum state of the
original system (but is stationary). Depending on the macroscopic constraints for the

system, we can establish different ensembles We discussed the following three
ensembles.

A mic ro c anonic al ens e rnb I e corresponds to an original system that is isolated with
,fixed U, V, and y'y'. Each system in the ensemble represents one accessible quantum,state in the original system. The most important relation for such an ensemble is theprinciple, which relates the total number of quantum states e ofthe original(and thus the number of systems in the ensemble) to the entropy of the system,

AJ

U,N
(4.e0)

S is the thermodynamic potential of a mrcrocanonical ensemble and its naturalueU,V,and. N
(ii;:A canonical ensemble is more appropriate for a system with fixed Z, y, and .M. Incase, the system can exchange energy with its surroundings and we assumed thatsurroundings are a thermal reservo1r. Although we can combine the system and theto establish a microcanonical ensemble for the combined system, it is more

to establish acanonical ensemble in which each of the systems is an accessible
state ofthe original system and each can exchange energy with the reservoir.

a number of accessible quantum states exists in the reseryorl corresponding to one ,accessible quantum state of the system, the probability of observing any onein the canonical ensemble is no longer equal, as in a microcanonical system. Theof finding a quantum state with energy fi is

+:(#)".'#:(

P(E) = e-Ei/KBr /z where Z = )-r*o l-ill7 ^L'nrJ (4.er)

(4.911, s-Eil*nr is the familiar Boltzmann factor and Z is carled.the canonicalfunction. The. canonical partition function i, ..i"i"o to the Hermhortz freethermodynamic porential with natural variaUlesas i, I/, and.lf, through

F(T,V, N): U - Z,S: -rcsTInZ @.gZ)
rather than having N fixed, we consider a system with fixed T, V, andp, such aexchanges not only energy but also particles with its reservoir. We can constructthe ensemble that

I
consists of a number of systems, each corresponds to one accessible
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quantum states in the original system and can exchange energy and panicles with the

reservoir. This ensemble is calledthe grand canonical ensemble, and the probability

finding a particular system with energy E; and number of particles N; is given bY

s
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and phonons and the emissive power for blackbody radiation, can be determined. Since,

at each allowable energy level, the system can be degenerate as measured by the density

of states D(E),thetotalenergy.atthislevel isU(E): E x f x D(E).If wewant
the total energy of the system, we should sum U(E) over all energy levels. In a three-

dimensional space (bulk materials),.the summation is often replaced by integration since

the separation between energy levels is usually very small. This procedure leads to the

following results for electrons, phonons, and photons:
P(E;, Ni):

where the exponential is called the Gibbs factor and

s(r, y,, : ;.?,1w):4^*,r,
is the grand canonical partition function'

After establishing the probabilities and partition functioris for different

*tuppiiJ,ft.* to iiff"r*t particles' The partition function for a dilute gas

indistinguishable molecules is given by

- (ztzrzrz)N
ut\ - N!

the partition functions for the translational, the

Electron spegific heat: Cy a T

Phonon specific heat: Cu a. T3 (ai low temperature)

Cy : constant (at high temperatures)

(4.ee)

(4.100)

(4.101)

where 21, Zr, Zr, artd Z" ate

the vibrational, and the electronic states' respectivelY

For electrons and other fermions, the average number of particles in a

accessible quantum state with an energy E is given by the Fermi-Dirac

function,

fexp(ha/r1T)-l]
(Planck's law) (4.102)

For nanostructures, the statistical distributions are still valid as long as the systems

are in thermal equilibrium. However, there are several reasons that could invalidate the
derivations of the specific heat and emissive power for bulk materials. One is that the

energy levels are different in nanostructures from these in macrostructures, which will
change the density of states. Second is that the energy separation is usually large and
the replacement of the summation by integration over energy is no longer valid as it was
for bulk materials.

With the contents of this chapter and the previous two chapters, the readers are
encouraged to read through current literature. With persistency and patience, readers
may find that they begin to understand (or partially underStand) some ofthe nanoscience
and nanotechnology research topics.

4.5 Nomenclature for Chapter 4

h
Photon emissive power: Ir: #F

f (E'T' t't): ---78-X--
exp \*r 1_ ,

On the basis of /, we can calculate the amount of energy this quantum state

In the classical limit, when the exponential in these distributions is much

than one, both Bose-Einstein and Fermi-Dirac distributions reduces to

B oltzmann distribution

f @,r, &) - exP
KBT

Wittr *re aistriUution functions, we are in a position to count the energY ofthe

1,,, lattice constant, m
c speed oflight

density of states per unit
volume, m-3

E6 blackbody radiation emissive
power, W m-2

- energy, J

conduction band edge, J
Fermi level, J

distribution function
Helmholz free energy,. J
grand canonical potential, J

h Planck constant, J s

D Planck constant divided by
2n,J s

1 intensity, W m-2 srad-l
ft magnifude of wave

u""tor, ,n-1
L length ofbox, m
rn mass, kg
m* effective mass, kg
n quantum number; electron

number density, m-3
1/ total number of particles in

the system
y'y'.1 Avogadro constant, mol-1
N p number of polarization of

optical phonons
from which other properties related to the energy' such as the specific heat for
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R universal gas constant, ,

J K-l mol-l
s accessible quantum state

S entropy, J K-l
T temperature, K
U system energy, J

u speed, m s-l
V system volume, m3

x integration variable

Z canonical partition function
0 temperature, K
KB Boltzmann constant, J K-l
.i. thermal de Broglie

wavelength, m

tL chemical potential, J

u frequency ofphonons or
photons, Hz

p density, kg ttt-3
o Stefan-Boltzmannconstant,

w m-2 K-a
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4.7 Exercises

4.1 Graind canonical ensemble. Establish a grand canonical ensemble and derive the
. - probability distribution for the ensemble, that is, eq. (4.17).

4'2 The,rmal de Broglie waverength.calculate trr. ttro-a a" nrogti" wavelength of
a He molecule at 300 K and show that the dilute gas condition, eq. 1+.:a1, is
satisfied at I atm and 300 K.
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.,: 
-- .^- +L- -^-aiffn: 4.3 Specific heat of monatornic gas.Derive an exlres-lfon for the specific heat of a

- 
li- 

"f 
H" gos and plot it as a function of temoerature'

4.4 Entropy of *i*ine''tt";#;';;tk; ;f !u*''nott' tanks have N molecules and

a volume V, anO are at the same temperature and pressure"Ttte two tanks are

connected bv 
" 
pi;;il';;;1";' ;$"t the valve il opened' the gases in both

tanks eventually rnix into a homogeneous mixture' Show the following:
' (a) If the two gases are identical' there I no change in entropy due to the
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distribution at the same temperatures'

4.6 Electrons in semiconductors' A
structure

semiconductor has a parabolic band

*Tiltit 
the two gases are different' the mixing causes an entropy qroduction of

2N ln2.
The difference in the results is called the Gibbs paradox and comei from the

distinguishability of the molecules'

.5 Bose_Einstein aistriuuiion pto, ,n" Bose-Einstein distribution as a function of

frequency for T : f-OO f, :OO K, and 1000 K' Compare with the Boltzmann

(e) Compute the emissive .power as a function of temperature and the
corresponding specific heat.

(0 Also compare (a)-(e) with corresponding questions for phonons in
problem 4.8.

4.10 Specffic heat of diatomic molecules. A diatomic molecule has one rotational
. energy state at 100 meV and one vibrational energy state at I eV. plot the

contribution of this molecule to the specific heat of a box of such molecules
as a function of temperature.

4.11 Electron specffic heat of a quantum well. Denve and plot the electron internal
e^nergy and-specific heat for an infinite-barrier-height quantum well, L, : le
A and 100 A, as a function of temperature. Take the'ilectron effective mass equal
to the free electron mass and an electron density fle : 2 * 1928 *-3.

4.12 Electron specific heat of quantum dots. Derive and plot the electron internal
energy and specific'h-eat for a cubic quantum dot with inflnite potentialba:rier
height with L : 20 A or 100 A as a function of temperature. Take the electron
effective mass equal to the free electron mass and an electron density n, :
Z * 1g2s ,o-3.

4.13 Phonon specific &ear. Assuming that phonons obey the following dispersion
relation (three-dimensional isotropic medium)

,:r.lLl.i" lklo I,: rr,l; 
1"" 2 

I

where a is the lattice constant, K the spring constant, and k the wavevector.
Derive an expression for the phonon internal energy and specific heat.

4'14 Fermi level and specific heat in Au. The valence electron ioncentration in gold
is 5.9 x 1922 " 

J3.

(a) Calculate the Fermi level in gold at zero temperature.
O) What is the corresponding Fermi temperature?
(c) Estimate the electronic contribution to the specific heat of gold at 300 K.
(d) Calculate the Fermi level at 300 K.

4.15 Phonon specific heat in Ge. Germanium has an fcc structure with two Ge atoms
per basis and a lattice constant of 5.66 A. on the basisrof the equipartition

': theorem, estimate the phonon specific heat per unit mass in germanium at high
temperatures and compare it with the experimental specific heat value at 300 K.

4.16 Phonon high temperature specffic heat-Debye model. prove that at high
temperatures the Debye model leads to a specific heat of 3k3ll; where N is
the number of atoms in the crystal.

..4'17 Diamond specific heat. The Debye temperature of diamond is 1320 K. calculate
the speciflc heat of diamond at 300 K and compare it with the literature value
(the lattice constant of diamond is :.56? A).

4.18 Phonon specific heat in a quantum dot. Abttkcrystal has a Debye velocity of
5000 ms-l and a Debye temperature of 300 K. Assuming that phonons in a
quantum dot obey the same dispersion relation as those in the bulk material, but
considering the discrete nature of the wavevectors, compute the specific heat of
a cubic quantum dot with the following lengths: l0 A, 20 A, and compare it with
the specific heat of the bulk crystal.

E-E,:#.re+ki.+k?)
' ' 

'|ve 
or below the conduction

The Fermi level in the semiconductor could be abo

band edge. Take the 
"t..t'on 

effective mass as the free electron mass'-Forp -
E.:0.05 eVandZ : :OOI(,aotfttfollowingintherange0'0eV < E-'E" <
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4.19 Btackbody radiation in a small caniry. consider thermal radiation in equilibrium

inside such a coti"ruuity. compute ihe radiation energy density in a cubic cavity

;i";c,h t - 1 pm at? : +do r ana compare it with the Planck distribution

"ii"itZa 
by assuming that the cavity is very large compared to the wavelength'

4.20 Entropy oion, phoninstate'Frcmeqs' (4'14) and (4'40)' show that-the entropy'

, s' or on" pt,onon state having a freggencY al obeys the following relationship:

: T^'*-fo): -+#
Where /s is the Bose-Einstein distribution'

Energy Transfer by Waves

implies that "enggggggjg;

For example, wave at
number of
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the other waves. consider thehowever,
can we

material waves.
answers these questions and brieflY discusses transPod rn the partiallY

coherent regime.

5.'l Plane Waves

When throwing a stone into water' one can observe a conientric wave

outward. Television antennas emit electromagnetic waves that are

spherical. Rather than considering these nonplanar wav€s' we will carry out most of

our discussion in this chaPter on the basis of Plane waves' although the Phenomena

be discussed also exist for other forms of waves such as the cylindrical

waves.
fixed time. These waves must satisfY the

govenung their motion. Later, we these governing equations, such as

Maxwell equations for electromagnetic waves' Before getting into these details,

examine some common forms' of plane waves For examPle, in chaPter

that the wavefunction of a free electron rs

V(r, r) : !rs-i(at-kx) I 1r'-i(at*kx)

the positive x-direction
because

can express
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identical to eq. (5.2) and we ttrus expect that the solution to a physical problem will be

the imaginary part of the complex variables used in solving the governing equations.

. In the following sections, we will examine three types of waves: the electron wave

as a material waves, the electromagnetic wave governing the radiation transfer, and the

acoustic wave representing lattice vibration.

5.1.1 Plane Electron Waves

lnchapter 2, we dealt extensively with electron waves in planar geometries, such as free
electrons and electrons in a potential well. The wavefunction of a plane electron wave

lropagating along the positive x-direction is

V(x, r) : A exp[-i(rot - kx)l \"/ (5.4)

From the Schriidinger equation, we obtained in chapter 2 the following dispersion
relation between the electron energy E and wavevector ft

2n(E - U)
--" Jn-

where U is the electrostatic potential. The particle current (or flux) can be calculated
from [eq. (2.31)]:

t: fiwvv* - \y*vq,) : *" [f *o*.]

can write F as

When using'such a comPlex

-F(t,r)$i"trt-krr)

F(t, r) : AexP[-i(a-lr - k r r)J

r 5.1.2 Plane Electromagnetic Waves

In this section, we will ihtroduce the Maxwell equations that govern the propagation
of electromagnetic waves. We will show that u ftun" wave of the form of eq. (5.3)
Satisfies the Maxwell equations and discuss how to calculate the energy flux of the

waves.

tN C_ : Vm-ll, andamagnetic-fieldvector H [C m-l Am- L When the
field interacts with a under the force of the

10ns the atoms in the These
own electric and fields that influence each

posrtrve
electrons ofan atom under an external field will be deformed from the original

condition, forming an electrical dipole.* A measure of the capability of
the material to respond to the incoming electric field is the glectric polarizatioLper.unit

*A dipole is a pair ofpositive charge Q and negative chatge -Q, sepamted by a small distance a. The

or slne For examPle' the imaginarY Part of F in moment of the pair of charges equals p : Qa


