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3.10 Electron density of states inside quantum wires. The electron energy dispersio
in an infinite potential barrier quantum wire can be expressed as

Y - A N A A A
E (ks, £, n) = o ity T I:(Ly> at (Lz) :I
where £, n can take integer values 1, 2, . . . . Derive an expression for the electro
density of states and plot this expression for Ly = L; = 50 A
3.11 Electron density of states inside quantum dots. Determine the electron density
of states of a cubic quantum dot with side length d = 20 A, assuming that th
electron effective mass equals the free electron mass.

3.12 Phonon density of states. Assuming that phonons of a three-dimensional crystal
obey the following isotropic dispersion relation,

w=2,/£
m

where 4 is the lattice constant, derive an expression for the phonon density of
states. £

3.13 Debye approximation. Derive an expression for sound velocity from eq. (3.45).
Calculate the sound velocity for a monatomic fcc crystal along (100) and (111
directions, using this simplified expression. Assume that the mass of the atom is
9.32 x10~23 kg, the lattice constant of the conventional fcc unit cell is 5.54 x_&

1010 m, and the spring constant is 7600 Nm™!.

3.14 Transverse and longitudinal phonons. Consider three separate acoustic phonons
in a three-dimensional isotropic medium with an effective lattice constant’
of 2.5 A. The dispersion for each branch is wy = vik, w, = vk (degenerate)
For v;, = 8000 ms~! and v; = 5000 ms~L, plot the density of states as
function of frequency. '

3.15 Size effects on density of states. The density of states expressions we derived are-
valid when the separations between states are small and the number of states is 3
large, such that we can calculate the number of states by eg. (3.50). In small |
geometries, the energy separations between different states can be large and th
number of states at each energy level can be small, so that eq. (3.50) is no longe:
valid. As an example, consider a cubic cavity of (2 wm)? size. Find out how
many states are allowed to exist inside the cavity for electromagnetic waves with |
a wavelength in the range of 0.5-1 pm, using the following two methods: &

(a) by finding out how many sets of (k, ky, k) are allowed in this cavity that fall
into the given wavelength range; ?
(b) by integrating eq. (3.59) over the given wavelength range.

4

Statistical Thermodynamics
and Thermal Energy Storage
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.quantum mechanics principles covered in the previous two chapters give the
lowable energy states of matter. The number of allowable states in typical macroscopic
tter is usually very large, and at any instant, the matter can be at any one of these
Zﬁt@s. Although our mathematical treatments in the previous two chapters were based
nsolving thdsteadi-stﬁl‘gSchrﬁdinggg equation for the energy states and the wavefunc-
ﬁ(’ms, matter will not stay at one parti i ic state) for lon
Be_cause of the interactions among particles (atoms, molecules, electrons, and phonons)
in the matter. For example, we assumed a harmonic potential between atoms to obtain the
] onon dispersion relation. In reality, the interatomic potential is not harmonic, as one
easﬂ.y infer from examining the Lennard-Jones potential. When the anharmonicity
e deviation from the harmonic potential) is small, the solutions of m;QEE}Edi’ﬂéEr'
. ation for the quantum states based on the harmonic potential are approximately
rrect. Yet a small degree of anharmonicity can cause a rapid (~10~9—10~13 ) change
of the matter from one quantum state to another. Due to the large number of quantum
s_'ta__te.s available in matter, it is s impractical to follow the real time evolution of matter
' .oi:lg its allowable quantum states. The bridge connecting th " quantum
-Z?ﬁta”;tego the macroscopic behavior is provided by statistical thermodynamics, which
S ﬁ&t?jnmnes the probability that matter will be at a particular quantum state when it is at
Equilibrium. Through statistical thermodynamics, temperature enters into the picture of

gy-storage and trapsport.
In this chapter, we focus on the quilibrium state bf a system and discuss different
p{obab:luy functions for systems under different constraints, such as an isolated system
f:a-system at constant temperature. From the probability distribution functions, we
will show how to calculate the internal energy and specific heat of a system, inclu’ding
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nanostructures, using what we learned in previous chapters about the energy levels, 3
degeneracy, and the density of states.

4.1 Ensembles and Statistical Distribution Functions

Figure 4.1 A microcanonical ensemble is made of isolated systems with fixed U, V, and N

In an actual experiment, wWe often follow the time history of a system and observe its
Each system corresponds to one accessible quantum state of the original systern.

time-averaged behavior. In analysis, however, following the time history requires the
solution of master equations that govern the motion of a large number of particles,
such as the Newton equations of motion and the time-dependent Schribdinger equation.
Although, with increasing computational power, such computation is becoming feasible
for limited situations, as in the molecular dynamics simulations to be introduced in

chapter 10, for most applications direct computation of the time history is impractical.
i i ing by introducin ensembles, whi

@slu!aref_ln statistical mechanics is that an isolated macroscopic system samples every

. accessible quantumstate _\.vith equal probability. This postulate is also called the principle
: of equal gmba{fuhgg. Tf  is the total number of accessible quantum states, the probabilit
of each accessible quantum state, denoted by s, being sampled is y

are large collections of systems eac 0
macroscopic constraints. Exam: les of the macroscopic constraints of a system are its 5
total energy, temperature, and volume. The quantities to be measured are averaged over '
the ensemble at a fixed time, rather than, as in an experimental situation, over a time
“period of & single system. A fundamental assumption made in statistical mechanics
s that the ensemble average of an observed ity is equa e lime averd
of the same quantity. This assumption is called thefergodic

pncs the probability of e_ach accessible quantum state is known, we can construct &
way to calculate a desired r{lacmscopic quantity (X) of a macroscopic system. We
first e\fa}uate the corresponding property X (such as temperature, pressure) for each
accessible quantum state, and then calculate the average according to

conditions necessary for this hypothesis to be valid is an ongoing res L
et al., 1998). Our analysis will assume that all systems are ergodic. Depending 0 (X) = Z P(s)X(
the macroscopic constraints, various ensembles are developed, each has a probability ‘ = 5) ; 4.2)

distribution for the microscopic states in the ensemble that differs from other ensemble
Tn the following, we will discuss three ensembles: microcanonical, canonical, and grand
canonical ensembles. b

Note that the summation is over all accessible quantum states.

Because. each accessible quantum state is a state of the system that satisfies the
;_macro.scoplc cqnstraints and each one has equal probability to be sampled, W
effectively dealing with a collection of  stationary systems, as shown fn ﬁ’ ur: 431;’

These systems are identical from the macroscopic points of vi’ew; that is, theyghave the

411 Microtanonical Ensemble and Entro it
: Py ‘same U, V, and N and are all isolated from their surroundings. This collection of <

Unlike classical thermodynamics, which completely neglects the microscopic processes 7 Systems is called an ensemble. A fixed N ensemb g
inasystem, statistical thermodynami 4s the system properties from its microscopic: .ensemble. The principle of equal is-yalid < | M chs&: R o
stem in a micro-

_n;m‘;o(r;jec?l ensemble. Le.lt‘er, we will introduce canonical and grand canonical ensembles
e Obti;li\;; (lih; g;i)l:;blht;; of each‘system in such ensembles on the basis of results

/ : e _rmcrocanomcal ensemble. Equation (4.2) means that each of
he stationary systems in the ensemble is sampled once in the computing of the aver-

ge. Such an average is called . !
P(s) = 1/, thus ge is called the ensemble average. For a microcanonical ensemble,

cs buil

states (Kittel and Kroemer, 1980 Callen, 1985). We consider an acroscopic &
system with a volume V, a total number of particles N, and a total enc of U (macro-
-rscopic constraints). The quantum states of the system that satisfy these macroscopic
constraints are calied thq@c—g@hr simply accessible states). Given
these macroscopic constraints, together with Getailed information about the interatomi
potentials between the particles in the system and the initial conditions, one could i
principle solve the Schrddinger equation to follow the temporal evolution of the syste
among the accessible quantum states. The macroscopic properties of the system, SuC
as temperature and pressure, are 4 measure of the average corresponding microscopi
properties over a certain amount of time.

How can we calculate the average values of this system? If we performed an experis
ment, we would measure these values as a function of time and carry out a time average..
In statistical mechanics, instead of tracing the time evolution of the system, we focus on
the probability of a system being at 2 specific accessible quantum state. A fundamental

Q

+ s=1

: m_a';'t;: elile&:l Elt::qul ‘p;liobabnhty for each accessible quantumn state in an isolated system
b o asonable for some readers. For example, for a system of 103 particles,
oy e ciluar.ntur.n st?.te might be that one particle has energy U and the rest have
. nergy. This distribution of energy among N particles seems to be a quite unlikely
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ility states that such a state is just as probable | i-‘

event but the principle of equal probab:
as any other quantum states, for examp
U/N (assuming that such a state is
likely. This concern can be tesolve
accessible states close to the latter case
would most likely sample one of these high-d
Suppose that we have determined the num
system with fixed U, V, and N. How can we relate Macros
quantities? For a microcanonical ensemble, we rarely use eq. (4.3) to calculate the
average quantities. Rather, we use a cruc
(1844-1906), who showed that  is directly relate

le, a state in which each particle has an energy

egeneracy states,

where i g is the Boltzmann constant (=

@oltzmann En‘nciéﬁe} This relation betwq;wmpx_and.aggcggib_lg states is.|
with the typical interpretation in classical thermos i tropy i a measure

Wil e 1P LR ! - _
of the randomness of the system. The larger the number of accessible states, the more
freedom a macroscopic system has, and thus the more randomness it has. The Boltzmann
constant (and its units) is a conversion factor that makes the classical definition of entropy
consistent with its microscopic definition while the logaritl
of the entropy used in classical thermodynamics. For exam)

divided into two subsystems, each having $21
of accessible states of the system is then Q1 x Q9.
satisfying the additiveness of entropy.
Because 2 is constrained by U, V, and
variables, and thus so is entropy,

If we know the above function,
the system. For example, eq. (4.5) can be written as

as\ as
ds = 23 du + | — dV+(E£> dN
- \U/Jyw oV /)yn IN/uy

The above equation,

~— pdV + pdN from classical thermodynamics, immediately leads to

1 3 p EN w [8S s
—_—=| — —=|— —_— = — 4, o ’
T (aU)V,N’ T (aV)U.N’ T (BN)U.V o) o

where p is the chemical potential. Equation (4.6) means that if we know the function _
iables BE

S(U,V,N) [or U(S,V.N)L we can determine all other thermodynamic state variabl

such as temperature, pressure, and chemical potential

a\thermodynamic potential
Itis important to realize that a thermodynamic potent

also accessible). The latter is perceived to be more {1
d by noting that there is usually a large mimber of
(large degeneracy) so that an actual observation 48

ber of accessible states Q of an isolated
2 to macroscopic thermodynamic §

jal link established by Ludwig Bolt n 3
' through °

o) |

1.38 x 10~ TK~1). Equation (4.4) is called the E 3
consistent 8E

ithm satisfies the additiveness_;
mple, if the system can be 8
and Qo accessible states, the total number |
Equation (4.4) leads to S = S1+ 52, 3

N, we anticipate that itis a function of these .

we can construct all other thermodynantic properties of 3

when combined with the more familiar form of 4U = T dS — §&

1. The function S(U,V,N) fs called

al must be expressed in terms of

its corresponding variables U,

Vv, and N. Not any arbitrary combination of MACIOSCOpIC Hs. -
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thermodynamic properties can be the vari f a th
_properties can be the variables o ermodynamic potenti
:Eagflzha Eﬁﬂc:wn funcuon‘of entropy S(T', p, N) with T, p, N as variables d:ens ngi't Fx?er
ik ;r thcrmon:lynzn_mi: properties of the system and is thus not a thermod: nailﬁc
5)0 th;; c.;;n:;-u eﬁnext ;ectmﬂ, we will examine two other types of ensemble. ea.c)i; leads
ction of a thermodynamic potential that gi ok '
macroscopic thermodynamic properties ofp the systemz.11 A i -0 e

4.1.2 Canonical and Grand Canonical Ensembles

practlce we are Often more 1ntere. ed' ele g W y te h ge
I“. . N rest 'lndll‘mjmn h
Wﬁh temmture. Ihe II'I.lCl‘OCaI!OI'lIC&I E!'lsembie 1S not convenlent fof thls purpose since

one of its natural thermodynamic variables i i
Inst?ad of considering an iSoﬂl‘t'Edwsﬂjfs?efﬁ 6?%51??&%%%':?::?: ;hﬂn _;Emperzalum.
of given temperature 7, fixed volume ‘M%wcleg r;;l ;; asystem
31:}1- sg:tg:: sa;;eﬂfed temperature, we assume that it is in contact m&mflmrzstil:
ié____mm . emperature. A ﬂ.ierma.l Teservoir is a very large object, such that its

mperature does not change even if there is energy transfer between the system and t;']e

reservoir. Because of this energy exchange, the system energy is not fixed. Our goal is to

———

obtain the grol:?abﬂitx of finding the system at a specific accessible quantum state with
energy E;, satisfying the macroscopic constraints of constant T Suand N i
see fha_iu because of the change of constraint from fixed U to ﬁxe&‘ T '!hang bk—vgg_mu
observing each accessible quantum state is no longer identical as i ¢ e 3b1h{3f e
g g as in a microcanonical
We start from the microcanonical ensemble sta stics established in the pn;vious

:;::11221 zszf::il:li;mg that 513?_.,5_5’?5?[“_ (and let’s call it the original system) and the
2 - The combined m has a total num
__iS_It;aét;s{;r_ZY: ;a;:n con;truct a microcanonical ensemble of the cﬁﬁi%?gﬁ%?:;%?
acceSSible.q;mn::; al: ensemble, bec:f.luse the reservoir is very large, the total number of
st states of the cqmbx._ng::d_systaz_n €, is much larger than the number of
st Juantun taies 8, of the ouginal svtom. s very likely that corresponding
i 51 e qua.nti.}m state of the original system there are many accessible
i o n‘: res:;rvou.'RaLher than examining a microcanonical ensemble of
M ta}f shown in _ﬁgure 4.2(a), we construct a new ensemble made of
of the origir;al system w?&slyrflt:;fcs)slcri)silz :::::;:isimbilre Mt-soacal e T
o e ic c¢ n s of constant T, V, and N, as shown
reservoir, the chance that we gbserve es -- T L—‘_“; e
. LA N2 ! 1 identical

sequently, e call his cne
e . Consequent] i n
pcons : Y, we call this ensemb:
i SpeCigC ea:::se i) We would like to determine the probability of finding a systerlrel
e cessl| -le quantum state with an energy E;. Let’s assume that theré ‘
(U, i) accessible states in the reservoir corresponding to this specific syst::g

- ' state. The probability of observing the system is then

| P(E) = @

Qi(E,) -
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i

- Original system Original system ¥ Original system If U is the average energy of the original system
y O e e Y ey emn e e S = 0 peemmgcetoioioiope por, e e of the original syst
;{: 3 [~ st quantum state’l af quantum stafe Z } atquantum state (I combined system is then the total entropy of the old
b7\ ‘ Z
dal 3 Se(Uy) = S,(U, — Uy + SU) 4.9)
(. - » :
My 3 By a Taylor expansion, we can express S,(U; — E;) as
¢ g :. wamuns shlﬁ,
£3% { v Sy (Ur — Ex) = S;[(U; = U) + (U — Ep)]
A Rl % : '
6. % | =S, (U Uy + 2 _E
G} r (U —U) + U - Ep)
‘E 2 4\ OE; ly—u '
d A I U-—-E;
2 k =5U-U)+ (4.10)
2 ok where we have applied eq. (4.6) to the new combined microcanonical ensemble
g L3
4 i
= L Quamtum State £, of  Quantum State & of v OEr lu,—u ot B
= Combined System Uy VN, - .
2 RECOIHE ety §ubst1tut1ng eq. (4.10) into eq. (4.8) leads to
- fu-Ts E;
P(E;) =exp l:———:l xp | — —*-
¥ b %pT €xXp ksT 7 4.12)
o1 where we have used S(U) = tS‘,(U,) — Sy (U — U), that is, eq. (4.9), to eliminate tﬁe
:_elntropy of the thermal reservoir. We recognize that F = U — TS is the Helmholtz free
energy of the system—a thermodynamic potential with natural variables of T, V, and N =7
Given F(T, V, N), we can calculate all other thermodynamic properties of the systerﬁ:

We use the probability normalization-requirement-to-find .

F E;
P(E~)=expl:—:| MU T
Xi: ! «pT Xi:exp kT =1

Figure 4.2 Constructing a canonical ensemble from a microcanonical ensemble. (a) A micro-
canonical ensemble for the combined system comprises the reservoir and the original system, '
with a total of & systems, each with equal probability. Each column represents microcanonical
ensembles with the original system in one quantum state, while the reservoirs may have many 3
nsemble has ©; systems with fixed T, V, and N. Each system

quantum states. (b} A canonical el
has a number of quantum states in the reservoir and thus not every system has an equal probability

(4.13)

of being observed. _—=
| t & [F(T,V,N)=—«TnZ | 4.14)
To find €2, in the above expression, we consider another combined system made of ont i where Z is called the canonical partition function
quantum state of the original system at energy E; and Q, quantum states of the reservoi kz' I
with an energy (U; — Ej). This “new” combined system occupies only one column in A 7 = Z exp [_ Ei \
t_ ey @.15)

i

“old” combined microcanonical ensemble
and is also a microcanonical ensemble because of its fixed energy. Assuming that the
entropy of this new combined system is S, and the entropy of the old microcanonical
ensemble in figure 4.2(a) is S;(Ur), we can use €q. (4.4) to rewrite eq. (4.7) as

figure 4.2(a) of the previously established

Substituting eq. (4.14) into eq. (4.12) leads to the probability of a fixed V, N, T system
iha a quantum state having energy E; as g

B(Ei) = e—Ei/kBT/a (4.16)

%?jhtl%iiactor ex?(—E,- /kpT) is called the Boltzmann factor. It is widely seen in different
ciplines of science. You may have encountered this exponential form somewhere else.

exp [S, (Ur — Ei)/x8]
exp [S:(Ur)/xs)

P(E;) =

e Cho
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Substituting eq. (4.20) into eq. (4.15) leads to the canonical partition function for the

For example, the Arrhenius law governing chemical reactions is a manifestation of the
‘o translational motion of one gas molecule,

Boltzmann factor. 2
A similaranalysis can be extended to consider a system of fixed volume thatexchanges -3

both_ene; articles with ir. From classical thermodynamics, 3 o Sy e el 7212 (n2 + n2 4 n?) _
we know that the driving force for particle flow is the chemical potential that is . Z Z Z expifie== mLeeaT . (4.22)
defined by eq. (4.6). e in equilibrium with the reservoir 3 nx=lny=ln,=1 2

is called a grand canonical ensemble. jables f h bl T,V, '3 .

S The variables for such an ensemole aré L, %, 4 To evaluate the above triple summation, we first notice that Ln2h2 / (2mL21cB 7)) in

and y, and the corresponding thermodynamic potential is called the grand canonical
potential G(T', V, ). Following a similar analysis to that of a canonical ensemble, E8
the probability of a quantum state having energy E; and number of particles N; is 3
given by k-

[the exponent is a very small number such that the exponential function is slowly varying
Second, 7y, ny, and n, arfe integers spaced by An, (or Any, An;) = 1. Due to the above
two reasons, the summation can be well approximated by integration,

REE 242(n2 4 2 + n2
N 2 . 3 n;+ni+n :
exp[ xpT ] > 3 Z_f/./exP 3 5 p) ! dnydnydn
P(Ei, N)) = —— (4.17) & e 2mL*kpT 1yeh
The exponential factor is call i and the denominator is the grand. '; 1 ‘ -V M_m/ﬂ 32 _ v

canonical partition function, given by

Nip — E; N: ._
VT,V m) = exp [_—] =Y Yz (4.18) €
: L %: ;; ksl EN; -

‘where y = exp(u/icpT) and the double summation is over all accessible energy states i
and number of the particles of the system. The grand canonical potential is g

where V = L3 and

e —

h
D —
\ J CTTTTYR (4.24)
is called the thermal de Broglie wavelength..

: Anot.her way to arrive. at the same answer as eq. (4.23) is to realize that the triple
sumatxon in eq. (4.22) is essentially sampling all the quantum states. With a slowly

- yarying exponential, we can convert this. ion over the quantum states into an
integration over allowable energy levels, using the density-of-states,

oo
’ E
Z = erx sl D
sty P.I: KBT] (E)dE

G(T,V,u)=U—TS— uN =—kgTIn3 (4.19)

where U and N are the average ‘energy and number of particles of the system, o
respectively.

4.1.3 Molecular Partition Functions

The above discussion shows that if the partition function i - ;_ 0o 32 | :
namic potential of a system can be determin and consequently all other thermo- 3 =V f _i, (2_"") EV2 exp | — E JE = v
dynamic quantities are also known. We discuss below the partition function of gas SR g 4% \ B2 P kT T (4.25)

molecules. .

Let's start with the partition function of a single molecule. To find the accessible which is identical to eq. (4.23).

quantum states, we can extend the solution for the energy levels of a particle-in-a- F‘°1' a dilute gaseous system with N the energy eigenvalues from a single
potential-well model to the three-dimensional case and arrive at the following form of particle-in-a-box model apply to every particle because the potential interactions among
the quantized energy leve i i a gas molecule in a cubic box the particles are weak. The total energy of the system equals the summation of the energy

gtf__ all p.amclles E,. = _E 1+E2+- - -+ En, where E; represents the possible energy values
A Pamole i and is given by eq. (4.20) without any additional constraints for the indices
3 ;x,, Nyi, nzi, because the total energy of a canonical system is not a prior constraint of
. {ne §ystem and thus can take any value. From eq. (4.15), we can write the canonical
2 .Egrt_lcle function for this N-molecule system as x

S T D DTS o exp(_E”LE”"'“LEN) (4.26)

Nx1.0y1.771 Nx2,Ny2,172 RN MyN N KBT

of length L [see eq. (E2.1.6)],

i n2h?
T oml?

E (ni + ni +n§) where ny, ny,n; =1,2,3,... (4.20)

and the density of states per unit volume is

1 F
D(E) = mam/#)”%”? @21)

*
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where each summation is over all possible states of molecule i as determined by indices

nart e d : from tha

(nxi» nyi, nzi) with specified values as in €q. (4.22). Wﬂk
- (Ll SLale O i e 1 . ‘ L () EHIN i -

able, that is, if every qua ; ;
j, eq. (4.22) could be factorized i N Real mol

each other and are thus indistinguishable. This indinstinguishability affects how we
perform the summations in eq. (4.26) because one accessible quantum state should 7
be counted only once in the summation. The indistinguishability of molecules means -
1 j identi uantum state, for example, with
= 10, they should be counted

in the summation of eq. (4.26) once only rather than twice because no way exists to -

that if two molecule
Nxi = Ngj = 10, ny; = nyj = 10, and n; = ngj

wmm general, counting such indistinguishable -
cases is difficult, but can be done when the accessible quantum states of one molecule

as given by eq. (4.20) are much larger than the total number of molecules such tha

no two molecules occupy the same energy states at the same time. |
as limit, we ovi indistinguishable | when treating them as

distinguishable, where N! = N(N — 1)(N —2)... 1 is the factorial of N. Thus in the

dilute gas limit, the canonical partition function, eq. (4.26), can be simplified to

From the canonical partition function Zy, we can calculate the Helmholtz energy of
the gas system:

3 2
(. ,V,N) kpTInZy = —Nkp [ 21“ (2rrntx3T)]

+xgT(NInN —N) (4.28) 3

where we have used the Stirling approximation: InN! ~ NIn N — N. This approxi-

mation is valid when N is large, which is typically the case. With F(T, V, N) known, .

all other thermodynamic quantities of the system can be obtained. For example, from
dF = —S dT — p dV + u dN, we can calculate the pressure as

14

© . (oF TN :
p=_< >=="_B— (4.29)
i T.N [

3V

and the internal energy can be calculated from

E;exp(—E;/xgT)
Uzinp(Ei)=Z_i_pEN_‘_B_
i i
dlnZy 3NkgT
= kpT? = 4.30
B° =oT 2 (2o,

The last two equations should be familiar. Equation (4.29) is the ideal gas law that
applies to dilute gas. Equation (4.30) is equivalent to eq. (1.28) and is a special case of
the equipartition theorem, which says that, at high temperature, every degree of freedom
with a quadratic energy term contributes «g7/2 to the average energy of the system.

Under this dilute-

@.27)
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A monatomic molecule has three degrees of translational freedom only and the energy
is in quadratic form, as eq. (4.20) shows. Each quadratic term in energy contributes
kg T /2, and thus, we have an average energy of 3k T /2 for each molecule.

For a polyatomic the ene eparated into
translational, vibrational, rotational, and electronic components:

E=E+E,+E+E, (4.31)

[

‘and the corresponding partition function is
=p Z= Z e—E/xnT

=Pt 3 e EulasT N g ErfesT Y g EelesT

=ZiZyZ Z, (4.32)

where Z;, Zy, Z,, and Z, are the canonical partition functions for each energy compo-
nent of the molecule as represented by the corresponding subscripts. Once the partition
function for one molecule is known, the canonical partition function for a dilute system
of N molecules can be calculated from eq. (4.27). :

Before concluding this section, we present a criterion that determines when the dilute
gas limi.t, which leads to the factorial N! in eq. (4.27), is valid. The requirement for
this limit is that the number of quantum states for one molecule is much larger than

the number of molecules in the box. Thus if the number of quantum states between

mcnﬂ . & _dYerage mo ELE " L laroe nan _the number o

words, 5
3kpT/2
N
D(EME >~ (4.33)
0

where the left-hand side is the number of quantum states with an energy between zero

* and 3kpT/2. Substituting eq. (4.21) into eq. (4.33) and carrying out the integration, we

pbtain a criterion for the dilute gas assumption to be valid as

AR (DT
oV \Zmegr) € °T.V(E) Al (434

‘distance.

& Example 4.1 Canonical partition function

2 Derive an expression for the canonical partition function of the rotational modes of
A& a H; molecule in a box of H; gas.
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appropriate ensemble for the new system is the Bfand cano 2
- o : 2eiu nical ensemble
canonical partition function for the new system can be evaluai !: ) 4'11'181;3 grand
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Solution: We have obtained in chapter 2 the energy, €q. (2.65), and degeneracy, -“
e

eq. (2.66), of arigid rotor as L
R s - =0 T 1 el o

E£=E£(£+1) =§$£(£+1)(E=0,1,2,...7|m|SE) (E4-1-1) = STV, i) = 3 yMZ =1+ exp (u—E> e ol

N e o T )= e

g®)=2t+1 (ELL2) where N; = 0 means that the quantum state is unoccupied, with system energy at zero,

and N; = 1 means that the state is occupi i
: 1a pied, with system energy at E. According t
. cq. (4.17), the probability that this quantum state is empty or occupied is__respeclivSIyo

where £ and m are the two quantum numbers of rational wavefunctions, aid B is the
rotational constant. The canonical partition function for the rotational modes is
P(E = O,N, = 0) = pp— ot L= )
! i (empt I
1+ exp (55; G ) pty) (4.36)

Z —Zex (—-E—z =ig(ﬂ)exp(——EL)
r—t.m P kT = : kT

o0
he(L 8x2lkpgT T
- f (26 + 1) exp [—B—u]de B L - E)
r P
0

and
\ 7
e

exp (I:Tf#)

1+ exp (-‘:;—,f_

The average number of occupancy-of this-quantum state is thus

xgT h? = e
e Eir= Bl s (occupied)  (437)

where 8; is called the rotational temperature

hB K -. 3
= — = — . . 4 E y = =— : —
b = o = Br2ea! (BA.14) ; _ {n) = f(E)=0x P(E; =0,N; =0) +1 x P(E; = E, N; = 1) _
In eq. (E.4.1.3), the first summation over all £ and m is over all quantum states and = - - (4.38)
the second summation over £ is over all energy levels. Similarly to eq. (4.23), we : exp ( K;#) +1
have conveérted the summation into an integral. 3
and the average energy of this quantum state is.

Comments. For hydrogen, B = 1.8 x 10'2 Hz and 6, = 85.3 K. The transformation °

ummation into the integral is valid only when T is much § (E) =0x P(E; =0,N; =0) + E x P(E; = E, N; = 1)
3 ? L B S y ¥ =

in eq. (E.4.1.3) from the s

larger than 6, that is, when changing £ by 1 does not change the exponential rapidly. --(-

So.eq. (B4.1.4) is valid only for T > 6. Tn the limit, when 7T is comparable to 6, or 4 : - E = Ef(E (4.39)
smaller, we can take the first few terms of the summation to get ) exp ( f_;#) +1 = )

(i} or in 2 more popular symbol f, is called the Fermi-Dirac distribution function,
Electrons and other partic i—Di istributi 1
gﬁm 43 ﬂ]us!rat.es this distribution function. Recall that 4 is the chemical potenffa?
_t_riberf thtf energy is a fev.v times of kpTsmaller than the chemical potential I.I'lg__dis—.
: tuu?n is close tc'> one, indicating that most of the energy sjatQLhdm.thﬁ.;lhcmi.cal
0 t:zg:ll ztrhee{i:icg;ed: W?en the energy 1s a few times of « BT larger than the chemical
. stribution function is close to zero, indicating that t
chemical potential are empty. Beca io S
R pty. use the mo f electron a:les ::?lt-l :hrc n?usr
2 uno tate ‘ e chemica
Wmmwﬂmw
i 3@ evel. In some ﬁelds, however, particularly electrical engineering, the
- c pc’tcnual _and the Fermi level are used interchangeably. ‘
i ext, let’s consider the probability of phonons or photons occupying an accessible

‘antum state of the system. Unlike electrons, the number of phonons or photons in

system i i
m is not conserved. Thus N_is not a thermodynamic variable for the system.

Br

Z, =1+3exp (—%—) TR (E4.1.5)

4.1.4 Fermi-Dirac, Bose—Einstein, and Boltzmann Distributions
Let’s now consider the probability of ele upying a specific quantum state. We
assume that we have determined the accessible quantum states for electrons in a given

system. From the Pauli exclusion principle, each quantum state can have a maximum of

one electron. If the system is at equilibrium with a temperature T, we wish to determine
ey & . & -
() )

the probability of one quantum state having energ being emply. ¢ 1pied by one
electron. We take this specific quantum state as our system, and the rest of the accessible
‘quantum states of the original system i i1 ener

ir because an electron

and particle exchanges
can fluctuate randomly between this quantum state and other quantum states. Thus the

t-il\:‘%xc_.(,f_.

{ ¢ cH-

&
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Figure 4.3 Fermi-Dirac distribution as a function of the electron energy relative to the
chemical potential.

and, correspondingly, neither is the chemical potential. We know that forana begfgﬂ;hol;f
quantum state of the system, with frequency v, there can be an arbitrary number 7 of

photons or phonons such that the total energy of this state is E=(n+1/2)hv (n =
0,1,2,...). Following a similar argument as for electrons, we take this quantum stﬂ?te
to be our new system and the remaining quantum states to be the reservoir, Since ﬂ;!El er
the chemical potential nor the particle number is a thermodynamic variable, : e tl:ew
system is best described by a canonical ensemble with the canonical partition nction

& CaAnOmCdl =

Figure 4.4 Bose-Einstein distribution as a function of the frequency of the carriers (phonons and
photons).

where we have neglected the zero-point energy, which does not participate in heat
transfer processes.

Other boson systems, such as gas molecules, can have a fixed
_For such bosons, wigjh&gmndmmﬂ.ﬁmmble as for fermions, and the

1
= (n+1/2) hv) _ = (~sf7) 440) MBe exp (££) - 1
Z) = ﬂizoexp (” kgT 1—exp (__ Kf;vT) 4

_where £ is again the chemical potential of the boson gas.
The Bose-Einstein distribution changes the “plus one” in the denominator of the
%-(P&l‘ml—Dll‘&C distribution into minus one. In the limit of low occupancy (high energy
"and high temperature), both Bose—Einstein and Fermi-Dirac distributions reduce to the

The probability that the quantum state (the new system) has n particles (photons or
phonons) is thus .

(n--1/2)hv Tl 'Boltzmann distribution function
exp ( xsT ) = _ NI —exp (_ _h_"_)] (4.41) ;
P(v,n) = -——-————Z T xsT .

f(E, T, u) A exp(—E—_—y‘) or f(E) = exp (——-E—) (4.45)
xgT ikpT

\.'I_'his distribution function is considered as “classical”, while the Fermi—Dirac and Bose—
Finstein distributions are “quantum.” Thus, for the statistical distributions, difference
between “classical” and “quantum” statistics lies merely in the “one” of the denominator!

and the average number of the particles, or the occupancy of the quantum state, 15

oo 1 4
= | = Piy,Ry=—F7 (4.42)
fv) Eﬁn v, n exp(-;l'-i'f)—l

This equation is the Bose—Einstein distribution function, and the pa,mcles obe}'m_g_ .
this distribution are called bosons. Figure 4.4 shows the Bose—Einstein distribution
e
‘Because each particle has energy hv, the average energy of the quantum state is

4.2 Internal Energy and Specific Heat

=The statistical distribution functi with temperature between the
uantum state and its energy level. With the distribution functions, we can investigate

E) = hvf (v) (4.43)
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the properties of matter at finite temperatures. In this section we consider the internal ,'
energy and specific heat. Recall that the constant volume specific heat per unit volume,

Cy Pm~2 K], is defined as
: 1 (8U\ g
==\|\-= 4.4 1
Cy v <8T>V (4.46) 3

energy levels are high and that their separatio
B S e r}: ns are large. So we can take the first term

Ze = 8e1 €XP [——” :’ L _Ee il E ;
/ kpT | TERTR T |t N g e [——KB"” “.52)
where U is the average internal energy of the system. We will consider the internal -

where E,; is the ith electroni i
viee U i e v el o iiintkieg ei onic energy level and g; is the degeneracy for that

energy level. From egs. (4.27 i iti
g gs. (4.27) and (4.32), the canonical partition function for N

mod it

i (Zr Zr Zv ZE)N
B YT E— (4.53)

and the average internal energy of the molecule, according to eq. (4.30), is thus

U= ICBTZi {ln <._._(Z‘Z’Zt'ze)~>,
oT N!

) ) '
=kpT?N | — — 4
B [BT(InZt)+ 8T(ln Zr)"‘ﬁ(lnzv)

4.2.1 Gases

For a dilute monatomic gas, the total internal energy is givenby eq. (4.30). Corsequently, 4
the volumetric specific heat is <

Zn

13 i
y = —— 4, 3
Cy 2ICBN (4.47) 3

Sincé the number of molecules per mole equals Avogadro’s constant N4 = 6.02 x
1023 mol ™!, the specific heat per mole for a monatomic gas is 3
3 3

cy = EICBNA = ER )
+ﬁ(ln Z,)— (1n N — 1)} 4.54)

where R(= kgNy = 8.31417 K~! mol™1) is the universal gas constant.
For a diatomic gas, we should consider the contributions from the rotational and
vibrational states. We already have from eq. (E.4.1.3) the rotational partition function |

of one diatomic molecule,

resTZ; \tloluTmetric specific heat can be obtained by taking the derivative of U with
Tesp o I at constant V. The translational energy contribution to the specific

. heat is given by eq. (4.47 i
P boat is y €q. (447). The electronic energy level contribution to the specific

¥ :
.- 6,800+ 1 >
Z, =Y @+ Dexp [-— 4 ('r+ )] ' (4.49) N 3 9
1=0 C e 2 7 :
W v ar ["B e z,_,] =0 (4.55)

We will consider next the vibrational partition function. The vibrational energy of a s

e o This result i o 1
harmonic oscillator was derived in chapter 2 as : is because the electrons are only sitting in the first energy states and their con

tribution to the total s
: : ] system energy does not change with t ibuti
&~ . of rotational energy states to specific heat is ¥ R il g

CV_,: j—v.i ICBTZ—B—']D i 2l gr'e(f‘i‘l)
vV aT aT (21 + 1) exp —____] (4.56)
£=0 T ]

We kn
ow, from eq. (E4.1.3), that the summation in the above equation is proportional

Ezhv(n-i—%) n=0,12,..)

The vibrational partition function is thus

8y to T/, at high t : T 6o "
5 e (___) r at high temperatures. In this limit ibuti ;
Z,=) exp _hv(+1/2)\ _ P2 451 to the specific heat is tmit, the contribution of the rotational energy level
kpT - (gu) =y : A0t
n=0 P\T

Cv,r = Nig/V (at high temperature) (4.57)

S Esult 3 . . . .
i éte 1sr agmr; a m@festat1on of the equipartition theorem. A diatomic molecule
a5, b cgrees of rotational freedom. So at high temperatures, when the rotational

WC]S ar y i = € av ge
€ qu exclted, eaCh molecule COntl‘ibuteS 2 X KB T/2 ICBT to th avera
A

where 0, = hv/kp is called the vibrational temperature. :
In addition, the molecule also has electronic energy states. From the solution of the -
electronic energy levels in chapter 2 for a hydrogen atom, we know that the electronic ;
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energy. At low temperatures, the rotational specific heat must be calculated from the *
full rotational partition function in the summation format, eq. (4.56). Similarly, the
contribution of the vibrational energy state to the specific heat is

o = kgN @2_ __e_eti__ (4.58)
VT Ty T2 (T 1) ’
At high temperatures, the above formula leads to
. 10F 6=853K -
Cyw ™ Ic); (4.59) 05 — 6,76332 K ]
. + 0.0 '1 L T M= =3 g
10 10° 107 10*  Figure E4.2 Specific heat of Hy

which is again a manifestation of the eguipartition theorem. After obtaining the con- TEMPERATURE (K)

tributions from all the energy modes, we calculate the total specific heat ofa diatomic ‘_Ir
molécule by summing each of the cont ibuting terms: Cy = Cv, + Cy,+Cvut+Cv.e
The following example shows more numerical details.

gas as a function of temperature.

4.2.2 Electrons in Crystals

Ny ) . ;
\ X Now we investigate the specific heat of electrons in a crystal. We assume that the electrons

Example 4.2 Specific heat of Ha -'_\-X—' & have a parabolic band with an isotropic effective mass
The rotational temperature of a hydrogen molecule is 85.3 K and its vibrational E —E.= n? K2 + K2 + &2
. e =g +ky +k) (4.60)

temperature is plot the specific heat of hydrogen gas as 2 function of

temperature.

. We obtained the density of states in chapter 3, eq. (3.52)

=

: ; : 32
Solution: From ¢qs. (4.48), (4.56), and (4.58), we can write the total specific heat {8 ; D(E) = — ( @) Bl =
per mole of a diatomic gas as ’ 272\ K2 N & (4.61)

R 2" (?) @IT — 1)
3., e+ ;
e [’r o7 (; ¢+ 1)exp[ - ]):\ (E4.2.1)

The last term in the above equation can be written as

v _ 9_,- zx -
Bt T
- 2
2, @t + DEE + D exp| - ] [Lee+ e+ Dew [—"r“§+1)]] |

72

r

. The total number of electrons per unit volume is thus

n= f f(E, T, )D(E)dE (4.62)
0

From eq. (4.62), the chemical potenti i
. .62), potential as a function of tem i
fora given n. For T = 0, the above relation leads to R, e

o

1 2m* 372

n= D(E =i | — )

sf i 3,;2(;:2) (=B (4.63)

. Weh [ . :

(ll« at ; ivg zllsreaiily gbtamed this relation, eq. (3.53), in chapter 3. The chemical potential

explicitly inte Cat il It-;le 1#2mnk ol 5> 5 ol aypae i, Grp (7)) crmushlbe

S Ogl-iz;a;m ggzgf’twhen (E—w)/ksT > 1, whichis the classical limit, we
A ution as an approximation of the Fermi—Di P

; (Equatmn (4.62) can be integrated explicitly, © Fermy-Difec distribufion.

(E422) -

0]
- —E+u 1 Ir* \ 372
wn= f exp| ——— | — L —
v / p( kgT >2n2 ( 2 ) (E—Ec)l/sz=Ncexp(—Ec TM)
—rr

A computer program is used to carry out the above summation. Figure E4.2 plot 1
the variation of cy/R with temperature. At low temperatures, only the translationa
energy levels are fully excited and the specific heat is 3R/2. As the temperature
increases, the rotational energy levels become excited and contribute to the specific
heat up to a maximum of R so that the total specific heat reaches 5R/2. At eve
higher temperatures, the vibrational energy levels start contributing to the specific
heat, which approaches a final value of TRI2. <

et : (4.64)
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inside the conduction band, which is the case when the semiconductors are heavily

with
= v, S : 3 . e e
s ( m;xBT)S/Z =5 :‘ i dic;;:ﬁ bug:ﬂl-]eed to carry out numerical integration with the Fermi—Dirac statistical
= 2 i :: i i
h 3 2. The value of the chemical potential needs a reference point. Equation (4.64)

suggests that ft is the relative difference between 1 and E, that determines the electron
number density, and thus thjs. difference is the value of the chemical potential. In
ch:‘apt?r 6 (figure 6.9), we will give a more detailed discussion on the reference
point 1ssue.

Equation (4.64) is often used to determine the chemical potential level in doped
semiconductors, as will be seen from the following example. ‘ i

Example 4.3 Chemical potential level in doped semiconductors .
. To calculate the specific heat of electrons, we first formulate the internal energy of

Silicon is a widely used semiconductor material, and it is often doped with phos- 3 electrons as

phorus to form an n-type semiconductor. Determine the chemical potential of an 3 -

n-type semiconductor doped with phosphorus with a concentration of 107 em—3 @ : ' -

at 300 K, assuming that every phosphorus atom contributes one free electron to the % U = / %E T, W)D(E)dE (4.66)
= ':‘I EC

conduction band and neglecting thermally excited electrons from the valence band. :'-
Although the silicon conduction bands are not spherical [figure 3.18(b)], they can 2
be approximated by an isotropic band with an effective mass equal to 0.33m, where
m is the free electron mass. ;

- For convenience, we limit our discussion to metals so that the 1
 Fo ; umber of electrons
unit volume r, is fixed. We further take E,. =0 as reference, eq. (4.62) becomes o

o0
ne = f f(E, T, u)D(E)dE = constant (4.67)
0

all six bands, eq. (4.64) should be written as
We can use eq. (4.67) to rewrite eq. (4.66) as

- me*.lch)Bﬂ ( E.,—;L) 0o
=12{\——7m— exp| — (E4.3.1)
" ( h? kgT VD= /_(E —Ef)f(E,T, u)D(E)dE + En, (4.68)
0

Taking n = 1017 cm™3, we can find the chemical potential as here E s i 5 ‘
where E is the Fermi level (wat 7 = 0K). In eq. (4.68), since only f is temperature

dependent, we obtain the heat capacity of the electron system as

pofe |2 (2”"‘*"8?)_3’2 r df (E,T, 1)
xpT 12 h2 Ce= / (E - Ef)—“#&—D(E)dE (4.69)
0

o "I‘).rpl,cally, df/dT is nonzero only in the region close to the chemical potential. If the

density of states does not vary rapidly around y, we can use its value at £ = u a1.1d ull
D(u) out of the integration. In addition, the change of 1 with temperature in mctfl is
very small because Ef is very large. We can thus neglect the temperature dependence
~of pand set u & E . Under these approximations, eq. (4.69) becomes

12 6.62 x 10~68

[1023 (271' % 0.33 x 9.1 x 10731 x 1.38 x 10723 x 300)‘3’2]
= 1n
12

(E4.3.2)

df(E, T, 'u)dE

Thus
daT

o0
Cer D(,u,)[(E— Ef)
s — E; = —5.65 x 26 meV = —147 meV (E4.3.3) 0

fe-rpe-w oo(GF)

Comments. 1. The negative sign means that the chemical potential is below = D(u)

the conduction band edge. The silicon bandgap at room temperature is 1.12 eV. g T2 =R 3
Thus the chemical potential level is within the bandgap. In fact, only in this n [CXP ( ,CB# ) + 1]
case, the Boltzmann approximation we.used in eq. (4.64) is applicable because Y o0 5
the electron energy inside the conduction band, minus the chemical potential, ~ k2TD(E ¢) x“e
By F L™ 4.70
(e +1)2 (*4.70)

is much larger than «p T If the chemical potential is close to the band edge or falls .
~E/kg
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i . i / lar i al can b
Since E ¢/xpT is very large, the above mtcg{' ‘
limit to ic>o,. leading to the following expression for the specific heat

@-: %nzn,m@fﬁ

where Ty = Eflkp is called the Fermi temperatu
the relationship n, = 2EsD(E )13, which can be o

Thus the specific beat of electrons is linearly dependent on temperature.

4.2.3 Phonons

4.2.3.1 Debye Model

In chapter 3, we obtained the p!
Debye approximation when the

e evaluated by setting the lower

4.71)

re. In deriving eq. (4.71), we used
btained from egs. (3.52) and (3.53). 2

honon density of states per unit volume ul.:ldcr _Lhe
three acoustic phonon polarizations are identical

[eg. (3.55));
Ep
= —_——= W —
D)=V 21203,
The total energy of phonons per unit volume is
i 3 f he’dw
U fhwf U V= 2n2v3) f exp(hw/icpT) — 1
0
0

and the volumetric specific heat of phonons can be calculated from

aU 2 [ w'exp(hw/ksT)
€ =97 = 2rtvpet? | lexplelesD) — 1P

From eqgs.
temperature fp are related through
. TUD KB 6p

wp = ——
& ap B

where ap is the effective lattice constant under the Debye model. Su
into eq. (4.74), we get

32 ? otexp(hw/ksT)
¢= ZﬁZ(aDa)D/ﬂ)3KBT2 ’ [exp{hm{xBT) —1]2

6p/T

3mkp <T )3 f xteFdx
=iza \ g 142
22} \fp/ | (@ -D

(3.56) and (3.57), the Debye frequency wp, Debye velocity vp, and Deby

bstituting eq. (4.75)
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Using eq. (3.57), the specific heat can be further written as

N T 3 60/T 4 x4
: x'e'dx
R (F) (5) f (&5 —1)2 Get)

0

where N/V is the number of atoms per unit volume. At low temperatures, the integration
limit can be set to infinity, leading to the familiar 72 law,

361tk (N Ty 3
@_ 15 (';7) (%)@ (4.78)

Generally, the Debye temperature is unknown and the above expression is used to
calculate the Debye temperature from experimentally measured values of specific heat. .
If the Debye model is accurate, a single value of the Debye temperature should be able
to fit all of the temperature-dependent specific heat data. Such a situation happens rarely,
however, and the Debye temperature is sometimes given as a function of temperature.
This temperature-dependent Debye temperature is because the Debye model assumes
© a linear dispersion, which is not valid for phonons close to the boundary of the first
‘Brillouin zone. In particular, it is completely wrong for optical phonons, for which the
" Einstein model is more appropriate, as we discuss below.

4.2.3.2 Einstein Model

Einstein’s model assumes that all phonons have the same frequency wg and is thus more
appropriate for optical phonons. We assume that there are N states; that is, N’ is the
number of lattice points or primitive cells for each optical phonon polarization.* The
- total energy of the crystal per unit volume due to the contribution of the optical phonons
with a frequency wg is then

o R v " Vlexp(hwg /kgT) — 1]
where the factor N accounts for the number of polarizations of optical phonons at this

s rﬁ__‘qquency. The specific heat per unit volume is then

U - N’ (hewg [xpT)? exp (hwe [k T)

S C=_— =Npkp— =

7\ V  [exp(hwg/kpTp) — 17

(4.74) Ho)

=37 (4.80)
- The contributions of other optical phonons at a different frequency can be similarly
. calculated. At high temperature, both the Debye model and the Einstein model lead to
- the same result, as required by the equipartition theorem because the oscillator has three
' 'gi{ections and each direction has two degrees of freedom (kinetic energy plus potential
> -energy).

Clearly, the Debye model will be more appropriate for acoustic phonons and the
Einstein model for optical phonons. At low temperatures, acoustic phonons are normally

(4.7

iged _*Notice that this N is different from N in the Debye model, in which all phonon modes (including the
J;_OplIc'al modes) are lumped as three identical acoustic modes.
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Equation (4.83) is the Planck blackbody radiation law, expressed in terms of per angular

40— T T T T T T}
- L6000 6000003 . frequency interval. In terms of wavelength, we have
= . .0 3 L
g I 2Glamme===="""""" TOTAL SPECIFIC HEAT i 5= 42| _ Ci/n
%0 ., v =lo ar| = Mlexp(C (4.84)
< | | i exp(Ca/AT) = 1]
B 250 O LISTED VALUES (Adachi, 1993 = ‘ — 2 iy ]
é (Adachi, 1993) where 61'19) 27711130 and C; = hc/kp. The blackbody emissivity power that is given
L 200 AL RN - 50 C_Q- (!- Icall 9 obtained easily from the above expression for intensity through
é == 5§ e = 1015 TISEEHON of eq. (4.82) for frequencies ranging from 0 to co leads to the
2 150 -  total photon energy depsity
& . _TRANSVERSE ACOUSTIC PHONONS _____]
100 = - o 4 4
¥, LONGITUDINALACOUSTIC PHONONS _ _ | ; e (4.85)
4 \\\ [ N jm ] —8 _2 —4 1
et S . where o (= 5.67 x 107° Wm™*K~*) is the Stefan-Boltzmann constant. The total

intensity is

600 800 1000
TEMPERATURE (K) i oT?
B I=—
Figure 4.5 Estimated contribution of different phonon branches to the specific heat of GaA: Ja: T (4.86)
(Chen, 1997). : I?nd the blackbody emissive power is thus
e =nl=oT" 387)

excited, so the Debye approximation is more appropriate. At room and higher tempera
tures, both acoustic and optical phonons are excited and a combination of the two models.
is more appropriate. Figure 4.5 shows the estimated contributions of different phono
polarizations to the specific heat of GaAs (Chen, 1997). In this figure, a sine-function
was assumed for the acoustic phonon dispersion.

3 A_hh'ough the concept of specific heat is seldom used in radiation, we can follow the
previous treatment for electrons and phonons and calculate the photon specific heat,

Hii C = 16O'T3

L. C

(4.88)

‘Which has the same temperature dependence as the specific heat of phonons at low

4.2.4 Photons témperatures [eq. (4.78)].

Photons are bosons and obey the Bose—Einstein distribution. We have obtained the

. g ger Q 0 5 5";' ¥ ;
photon density of states in a three-dimensional cavity in €q. (3.59), 40 Example 4.4 Electron and phonon contributions to specific heat

7 i i TheD - - . _
D(w) = _—-dN = ___r.: 5 (4.81)° b e iﬁebﬁle temperature of gold is 170 K and its Fermi level is 5.53 eV. Compute the
Vdow w4 i specific heat of phonons and electrons in the temperature range of 0-1000 K
. By, ; -
From eq. (4.81), the photon energy density per unit volume per unit angular frequency

Selution: The phonon and electron contributions to specific heat are given by

e 3 /T
Phonon: C = 9«p (—) (1) / it eidx
|4 fp 4 (&% — 1)?

interval is

h o
w2c? [exp(hw/xkpT) — 1]

Uy = f(w, T)hoD(w) =

Since a photon propagates in all directions at the speed of light c, the intensity is then®
E 1
Electron: C, = 5”2"eKBT/Tf

cUy h o’
©= 4z  4xdc? [exp (ho/kpT) — 1] e ¥ Gold h : '
: S as an fcc structure with a lattice constant of 4.08 A, and the number of

I - . .
_atoms per unit cell is 4. Each atom contributes one valence electron. We have

L NMe=N/V = 3 ~30 :
leis /V =4/(4.08)° x 1073 m~3. The Fermi temperature Tr=Ef/kp = 64,

*See section 6.1.3 for a more detailed explanation of intensity. . K. Substituting these numbers into the above expressions, we obtain the ph
# ] in the phonon
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and electron specific heats. The volumetric specific heats are converted mt(l) mass il o
specific heat (¢ = C/p) and plotted in figure E4.4. We observe that the electron ;

specific heat is typically much smaller than the phonon specific heat, except at very

low temperatures.

"Figure 4.6 Experimental specific heat of anatase TiO3 nanotubes (four kinds of ;ubés synthesized
under different conditions) and that of bulk TiO (Dames et al., 2004). Insert shows transmission
electron micrographs of the nanotubes.

i and Specific Heat i
G o Sl : . - 1-or2-dimensional systems should exceed the bulk value, but several other calculations

\predict the low-temperature, low-dimensional specific heat should be reduced compared
fo bulk (Prasher and Phelan, 1998; Yang and Chen, 2000), slightly larger than the bulk
value (Grille et al., 1996), or varying from both below and above bulk (Hotz and Siems,
1987, Tosic et al., 1992).
.. Limited experimental data are available to test these theories. The first studies were
" on zero-dimensional (OD) metallic nanoparticles of ~2—10 nm diameter, where experi-
: «ments (Novotny and Meincke, 1973; Chen et al., 1995) show a specific heat enhanced
ge cby 50-100% at temperatures where the average phonon wavelength is comparable to
.the diameter of the nanoparticles, an exponential decay at lower temperatures, and an
. asymptotic return to bulk values at higher temperatures. These results have been success-
fully explained by theories that sum over all of the normal modes of an elastic sphere
“with free boundaries (Baltes and Hilf, 1973; Lautenschlager, 1975; Nonnenmacher,
.1975). For anatase nanoparticles, Wu et al. (2001) reported enhancement by 20% for
particles of about 15 nm diameter between 78 K and 370 K. In figure 4.6, we compare the
experimental data on the specific heat of compacted titanium dioxide (TiO3) nanotubes
'-LF_With that of bulk TiO;, and show that the nanotubes have higher specific heat at low
%:_}emperatures (Dames et al., 2004).
- Considerable effort has been devoted to studying the specific heat of carbon nanotubes
- (CNT). Yietal. (1999) observed a linear temperature dependence down to 10 K in multi-
‘walled (MW) CNT, in close agreement with isolated sheets of graphene. In contrast,
.another MWCNT experiment by Mizel et al. (1999) showed a much steeper decay,
ith temperatures of about 7% down to ~1 K, a better match to graphite. Bundles of

i ecific heat will be different
ct that the internal energy and specific hea
s e ections. The differences come from two

from what we have given in the preceding sectior s
sources: one is physical and the other is mathemaui:f:;l. (?rn lhcmphys.wst.) iiii;l::: ﬁe;:rgaz 2
- i i iti ill differ from those mn ,as 2
levels, and their associated densities of states, will 4 e
’ i ical side, for bulk materials we have replaced %
have seen in chapter 3. On the mathematical side, f .
;cc summation ovefa]l energy states by integration in calculating the total energy. Fo
s i imati be accurate.
ostructures, this approximation may no lon_ger ; )
nanA few experimental and- theoretical studies exist a_bout .lhe size effects on :1 :
honon specific heat of nanostructures. For systems of dimensionality d of 1 or higher :
l(Jd — 1 for nanowires, d = 2 for films, and d=3 tfor bulk structures), the r[:;bnyal
model predicts that at low temperatures the lattice specific heat should be propo

iteri i i is to com the aver:
to T4. The most common criterion for dimensional crossover is to pare

age phonon wavelength A to the length scale of the structure. The average phono!

wavelength can be estimated from the specual-depcn_dct‘u p‘honon mtcl;rial energ(;lr Etin)
integrand of eq. (4.73)], similar to that obtaining the Wien's @placam;an c?:i s;u.-,q..‘m;.1 b}:
from the Planck law. Well below the Debye templerature, this wave ;na 2 iin - :
1T =~ 50nmK for sound velocity vs (5000 m_s‘ ). For examglei a nn;m i
would be expected to exhibit C ~ T behavior at 50 K O =~ nil), ey

behavior at 5 K (A & 10 nm). Some questions ;;ustl s:;?l:}lm\il:;ﬂ;:;o nfﬁ;; . bulkgvalu
dimensional specific heat should be larger or smaller oy

i et al., 2004) summing over all of the normal modes
Saiﬁiifn?r?ﬁiﬂ?ﬁm;ie boundaries predicts that the low-temperature specific heat of_
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single-walled (SW) CNT were studied by both Hone et al. (2000) and Mizel et al. (1999), -3
and exhibited a linear or slightly superlinear temperature dependence from ~100 K °
down to ~2-4 K. At lower temperatures, Lasjaunias et al. (2003) reported a transition
to T? attributed to the filling up of inter-tube modes, plus a surprising additional term _1'
proportional to 793 or 7092 below ~1 K that was qualitatively attributed to localized §
excitations of atomic rearrangement as in glasses and amorphous materials. In all of
these CNT, the specific heat is bounded between that of graphite and graphene. Various
theoretical efforts have had mixed success at explaining these MWCNT and SWCNT
measurements by extending isolated tube models to include the effects of interlayer §
coupling (in MWCNT) and intertube coupling (Mizel et al., 1999; Hone et al., 2000; =¥
Zhang et al., 2003). Overall, more work is needed to reconcile the diverse experimental,
results with theory (Dresselhaus and Eklund, 2000). 3 ;
In comparison with phonons, we anticipate that the specific heat of electrons will have 3
a stronger size dependence, due to the following factors: (1) the energy quantization of
electrons is more dramatic than that of phonons; (2) the specific heat also depends on
the Fermi level, particularly the rate of change of the density of states at the Fermi level.
In our derivation of the electron specific heat in metals, we assumed that the density of
states does not change much near the Fermi level: For nanostructures, the sharp features
in the electronic density of states suggest that this assumption may not be valid. Indeed, 3
existing studies show that the specific heat is a strong function of the size (Ghatak and
Biswas, 1994, Lin and Shung, 1996). L
For photons, we are not interested in the specific heat but rather in the energy density 4
or emission spectrum from small objects. Since thermal radiation can have relatively '
long wavelengths, the issue of size effects on the energy density of the emission spectrum
from a small object has been studied for various geometries (Rytov, 1959; Rytov et al.,
1989). One interesting question is whether the thermal emission from any structure at
any specific wavelength can exceed the blackbody radiation given by the Planck law!
For example, the density of states in photonic crystals can be very different from that in
free space. It can be inferred that in the frequency region where the photon density of
states of the photonic crystal is larger than that in its parent crystal, the energy density
of the thermal radiation inside the photonic crystal can exceed that in its parent crystal.
However, not all of the energy can be emitted into free space since the density of states in
free space is limited by eq. (4.81), and thus the maximum emissive power in an open fl‘ee -5 Specific accessible quantum state of the syste
space is the blackbody radiation. There are, hqwcver, some recent experimental reports ?_ System in the canonical ensemble is no lony .
of the far-field thermal emission from photonic crystals being larger than that of the #2%
blackbody, although the physics is not clear (Lin et al., 2003). At small scales, however,
radiative heat exchange can exceed that between two blackbodies due to the tunneling
of evanescent and surface waves (Polder and Van Hove, 1971; Tien and Cunnington,
1973; Pendry, 1999; Mulet et al.; 2002; Narayanaswamy and Chen, 2003), which we.
will discuss in more detail in the next chapter. Another example is that the emissivity
of particles with a diameter comparable to the wavelength can exceed 1 because of the,
diffraction effect (Bohren and Huffman, 1983). .

: rapid tra_‘nsitilons among accessible quantum states as a function of time, A fundamental
_ assumption in statistical mechanics is that, in an isolated system, every accessible
quantum state has an equal probability of being sampled by the system. Because it is
hard to follow the time evolution of the system, we use an ensemble aver-age to replace
: the t,?me average for quantities of interest and assume that the ensemble average equals
- the time average. This assumption is called the egordicity assumption. An ensemgle is
. made from a collection of systems, each of which is one accessible quantum state of th
'orfg_inal system (but is stationary). Depending on the macroscopic constraints for th:
| :i?sgeiillzstem, we can establish different ensembles. We discussed the following three
: A microcanonical ensemble corresponds to an original system that is isolated with
* fixed .U , V, afld. N. Each system in the ensemble represents one accessible quantum
: state in the OI.'lgl'Ilal system. The most important relation for such an ensembql[e is the
Lls_'loltzmann principle, which relates the total number of quantum states €2 of the original
system (and thus the number of systems in the ensemble) to the entropy of the systgem

S(WU,V,N) =kpln® (4.89)

i
Through the Boltzmann principle and the first law of the. i

: rmodyna i
q_t_]::r;r thermodynamic properties of the system, S e

l=(§> £_<3§) p_ (23S |

Thus S is the thermodynamic potential of a microc :
s anonical 3
variables are U, V, and N. nical ensemble and its natural

P(E) = e 5il8T 17 where 7 — ex [_i

' Z Pl-7 4.91)
ai-?ﬁeq. (f4-91)_, e~ EilkaT g lh§ familiar Boltzmann factor and Z is called the canonical
i on function. 'The_ canonical partition function is related to the Helmholtz free
2618, a thermodynamic potential with natural variables as T, V, and N, through

F Ty s = i = w :
sl e, T,V N)=U-TS = «gTInZ (4.92)
'tz. 1‘:_1the;l than having N ﬁxéd, we consider a system with fixed T, V, and 1, such a

™ exchanges not only energy but also particles with its reservoir. We can cc;nstruct

Through statistical mechanics, this chapter establishes the link between the energy &
the ;
[ enfemble that consists of a number of Systems, each corresponds to one accessible

states and temperature for a system in equilibrium. A system in equilibrium makes
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quantum states in the original system and can exchange energy )
reservoir. This ensemble is called the grand canonical ensemble, and the probability of -

finding a particular system with energy E; and number of particles Nj is given by

Nip—E;
exp [-——-—*:; o ]
P(E;, Ni) = 3 (4.93)
where the exponential is called the Gibbs factor and
’ : Nip — E;i .
(T, V, ) = ZZexp[ “‘:BT '] =Y 2Nz (4.94)
. N E; N

is the grand canonical partition function.

* After establishing the probabilities and
we applied them to different particles. The partition
indistinguishable molecules is given by

_ABT DT '
| ZN=""Hhi ; (4.95)
where Z;, Z,, Zy, and Z, are the partition functions for the translational, the rotational,

the vibrational, and the electronic states, respectively.
For electrons and other fermions, the average number of particles in a specific
quantum state with an energy E is given by the Fermi-Dirac distribution

partition functions for different ensembl
function for a dilute gas made of

accessible
function,

y :
e—————xp ( %_# ) = ; (4,96).

t of energy this quantum state contributes

fE T, )=

On the basis of £, we can calculate the amoun

to the total energy as (E) = E x f.

For phonons, photons, and other bosons, the average number of particles in a speciﬁé

and particles with the 3
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and phonons and the emissive power for blackbody radiation, can be determined. Since
at each allowable energy level, the system can be 'degenerate as measured by the .dénsit ;
of states D(E), the total energy at this level is U(E) = E x f x D(E). If we wan);
tl?e tqtall energy of the system, we should sum U (E) over all energy levels. In a three-
dlmensmnffl space (bulk materials), the summation is often replaced by integration since
the separation between energy levels is usually very small. This procedure leads to the

" following results for electrons, phonons, and photons:

Electron specific heat: Cy o« T 4.99)
Phonon specific heat: Cy o T3 (at low temperature) (4.100)
Cy = constant (at high temperatures) (4.101)

h o’

Photon enlissive poWer_: I, (Planck’s law) (4.102)

= 473¢2 [exp (hw/xpT) — 1]

fj‘or nanostructl%r'es,.the statistical distributions are still valid as long as the systems
are in thermal equilibrium. However, there are several reasons that could invalidate the

~ derivations of the specific heat and emissive power for bulk materials. One is that the

energy levels are different in nanostructures from these in macrostructures, which will
glangel the densn%r of states. Second is that the energy separation is usually large and
e replacement of the summation by integration over energy i alid as i
] 1t 0 ) isnolon

for bulk materials. x st

Wxth the contents of this chapter and the previous two chapters, the readers are
_encouraged to read through current literature. With persistency and patience, readers

- - . i

may find that they begin to understand (or partially understand) some of the nanoscience
and nanotechnology research topics. ’

4.5 Nomenclature for Chapter 4

quantum state with frequency v is given by the Bose-Einstein distribution 3 a. lattice constant, m : h  Planck constant, J s
: Fc speed of light ,
_ h Planck constant divi
F.T) = . @.97) ¢y  specific heat per mole, 2r, ] B (] B
exp (_{W_) -1 : ' J K~ mol™! AT
by ; - . ‘ I intensity, W m~2 srad—!
| G volumetric specific heat, k magnitude of
Given this average number of particles, each having an energy hv, we can calculate O ImTK ve'% =i
the contribution of this specific accessible quantum state to the total system energy as D density of states per unit L e : (t)l:’ I?b
(E) = hvf. ' volume, m™> m s k0 .
In the classical limit, when the exponential in these distributions is much large ey blackbody radiation emissive C IlIl"ass,' =
than one, both Bose-Einstein and Fermi-Dirac distributions reduces to the classica ; power, W m ™2 Mg e e mass, ke
Boltzmann distribution : E-  energy,J ¥ gﬁ;nt:umdnun'ltb e 31360t1'0n
X er density, m—
B ; E, COIldl‘lcthn band edge, J N total number of particles i
F(E, T, ) =exp |~ (4.98)4 . Ey  Fermilevel,J P =
5T F 0 b i the system
. L e . 1 L . ibution function N4  Avogadro constant mol™!
With the distribution functions, we are in a position to count the energy of the system, F  Helmholz free energy, J Np number of polari ’t f
: G  grand canonical potential, J - optical phoflor?sn e

from which other properties related to the energy, such as the specific heat for electron
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R universal gas constant, % angular frequency, Lasjaunias, J.C., Biljakovic, K., Monceau, P., and Sauvajol, J.L., 2003, “Low-Energy Vibrational

JTK 'mot™! rad.Hz - Excitations in Carbon Nanotubes Studied by Heat Capacity,” Nanotechnology, vol. 14
s accessible quantum state , Q number of accessible stat pp- 998-1003, : e 0
S entropy, JK~! in a microcanonical syste La“Fe;Slc_glzgerr lé-, 1975, “Improved Theory of the Vibrational Specific Heat of Lead Grains,”
T  temperature, K 3 grand canonical partition e 0;___ tate Communications, vol. 16, pp. 13311334,
U R j function . Lin, MF, and “Shung_, W-W-K-, 1996, “Electronic Specific Heat of Single-Walled Carbon

system enerflgy, : - Nanotubes,” Physical Review B, vol. 54, pp. 2896-2900. R :
v speed, m s~ () ensemble averagel Lin,.S.Y., Moreno, J., and Fleming, J.G., 2003, “Three-Dimensional Photonic-Crystal Emitters
VvV system volume, m’  for Thermal Photovoltaic Power Generation,” Applied Physics Letters, vol. 83, pp. 380-381.
Xx - integration variable Subscripts Mlze!i A, Bencdgcl, I_...X., Cohen, M.L., Louie, 8.G., et al., 1999, “Analysis of the Low-
Z  canonical partition function emperature Specific Heat of Multiwalled Carbon Nanotubes and Carbon Nanotube Ropes,”
0 ) ture. K D Debye Physical Review B, vol. 60, pp. 3264-3270.

IR . Mulet, J.-P.,, Joulain, K.L., Carminati, R., and Greffet, J.- « LU
kg Boltzmann constant, J K~ e - electronic Heat Transfer at Nanometric Distances.” Mi reffet, J-J., 2002, “Enhanced Radiative

) » . 1 1stances,” Microscale Thermophysical Engineering, vol. 6

A thermal de Broglie f at Fermi leve pp. 209-222. v !

wavelength, m i ith energy level Narayanaswamy, A., and Chen, G., 2003, “Surface Modes for Near-Field Thermophotovoltaics.”
¢ chemical potential, J r reservoir; rotational : Appheﬁ P h}{’;"; Letters, vol. 82, pp. 3544-3546. N ? 3

’ ' nnenmacher, Th.F,, 1975 i ; ' e ,
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4.7 Exercises

4.1 Grand F{:nan'ica_l ensemble. Establish a grand canonical ensemble and derive the
probability distribution for the ensemble, that is, eq. (4.17).

4.2 Tﬁgmaf de Broglie wavelength. Calculate the thermal de Broglie wavelength of
a He molecule at 300 K and show that the dilute gas conditi i
satisfied at 1 atm and 300 K. - e
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4.3 Specific heat of monatomic gas. Derive an expression for the specific heat of a
£ He gas and plot it as a function of temperature.
4.4 tg:::(rgpy of%nixing. There are two tanks of gas. Bntcl; tanic:u];n.zv?rg; Twozwmu;i g;:i
V, and are at the same temperature an pre : r
5 ml:}::?:d by a pipe with a valve. After the valve is opened, the ggscs’ in both
o homogeneous mixture. Show the following:

tanks tually mix into a i _
(a)elvt:3 Itjlhe twyo gases are identical, there is no change in entropy due to the
mx;l?}gif tﬁ‘e two gases are different, the mixing causes an entropy Productlon of

2NIn2. :
The difference in the results is calle

distinguishability of the molecules.
4.5 Bose-Einstein distribution. Plot the
frequency for T = 100 K, 300 K, and 1000 K. Co

distribution at the same temperatures.
4.6 Electrons in semiconductors. A
structure

d the Gibbs paradox and comes from the

Bose—Einstein distribution as a function of
mpare with the Boltzmann

semiconductor has a parabolic band -

' n? 2,32
E—Ec=5—(G+k+k)

The Fermi level in the semiconductor could be above or below the cor;it;ctloix
band edge. Take the electron effective mass as tl_'ne free electron ﬁass.E_ Eu v
E,=0.05eVandT = 300K, do the following in the range 0.0eV < p
2 lceaaYélot the Fermi-Dirac distrbution a2 f(:l;ztion of E,
ity of states as a function 3 :
?3 gﬁlﬁ:tgeﬂﬁlgmduu of f(E,T)D(E), whicfh means the average number of |
electrons at each E, and plot the product as a function of E,
(d) Calculate the productof E ¢ (E,T)D(E), w ¢
allowable energy level, and plot the product as a function of E.
Repeat the questions for o — E; = —0.05eV.
4.7 Chemical potential. The number of elecu?ns
assumed to be equal to the dopant concentralion.
levels relative to the band edge for the dopant concen
10 cm~2, assuming free electron mass and 7 =300K.
4.8 Debye crystal. A crystal has aslggbée velocity of 5000 ms
500K.For T = ) X
te:r}g;r;lt:tr fhngose-Einstein distribution_as a fun:::non of w,b i
(b) Plot the density of states as a function w using the Debye model.
(c) Plot D as a function of frequency .
(d) Plot AwfD as a function of w.
(e) Compute the specific heat of
1<T < 1000K
4.9 Blackbody radiation. Consider th
(a) Plot the Bose~Einstein distri :
(b) Plot the density of states as a function of @,
(c) Plot fD as a function of .
(d) Plot hofD as a function of @.

in the conduction band can be
Calculate the chemical potential
trations of 10'® cm™ and

1 and a Debye

the crystal as a function of temperature for

e blackbody radiation at T = 300 K.
bution as a function of angular frequency @.
using the Debye model.

hich means the actual energy ateach "
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(e) Compute the emissive .power as a function of temperature and the
corresponding specific heat.
(D) Also compare (a)-(e) with corresponding questions for phonons in
problem 4.8. E
4.10 Specific heat of diatomic molecules. A diatomic molecule has one rotational
energy state at 100 meV and one vibrational energy state at 1 eV. Plot the
contribution of this molecule to the specific heat of a box of such molecules
as a function of temperature. -
4.11 Electron specific heat of a quantum well. Derive and plot the electron internal
~ energy and specific heat for an infinite-barrier-height quantum well, L, = 20
Aand 100 A, as a function of temperature. Take the electron effective mass equal
to the free electron mass and an electron density n, = 2 x 102 m=3.
4.12 Electron specific heat of quantum dots. Derive and plot the electron internal
energy and specific heat for a cubic quantum dot with infinite potential barrier

~ . height with L = 20 A or 100 A as a function of temperature. Take the electron

effective mass equal to the free electron mass and an electron density n, =
2% 10¥m~3 :

4.13 Phonon specific heat. Assuming that phonons obey the following dispersion
relation (three-dimensional isotropic medinm) g

\/? . |Kla
w=2,/— [sin —
| m
where a is the lattice constant, K the spring constant, and k the wavevector.
, Derive an expression for the phonon internal energy and specific heat.
4.14 Fermi level and specific heat in Au. The valence electron concentration in gold
©i85.9 x10% em™3, :

() Calculate the Fermi level in gold at zero temperature.

(b) What is the corresponding Fermi temperature?

(c) Estimate the electronic contribution to the specific heat of gold at 300 K.

(d) Calculate the Fermi level at 300 K. ‘

4.15 Phonon specific heat in Ge. Germanium has an fcc structure with two Ge atoms
per basis and a lattice constant of 5.66 A. On the basis 'of the equipartition
theorem, estimate the phonon specific heat per unit mass in germanium at high
temperatures and compare it with the experimental specific heat value at 300 K.

4.16 Phonon high temperature specific heat—Debye model. Prove that at high
temperatures the Debye model leads to a specific heat of 3kgN; where N is
the number of atoms in the crystal.

- 4.17 Diamond specific heat. The Debye temperature of diamond is 1320 K. Calculate

the specific heat of diamond at 300 K and compare it with the literature value
(the lattice constant of diamond is 3.567 A).

4.18 Phonon specific heat in a quantum dot. A bulk crystal has a Debye velocity of

5000 ms~! and a Debye temperature of 300 K. Assuming that phonons in a
quantum dot obey the same dispersion relation as those in the bulk material, but
‘considering the discrete nature of the wavevectors, compute the specific heat of
‘a cubic quantum dot with the following lengths: 10 A, 20 A, and compare it with
the specific heat of the bulk crystal.
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iation i avi \sider thermal radiation in equilibrium 3
dy radiation in a small cavity. Con§1 . itior : m 3
G i‘;l:iflibsiél a cubic cavity. Compute the radiation energy density ina cubic cavity

flength L = 1 pmat T = 400 K and compare it with the Planck distrlibutit(})ln
e — -« n .
gbtainged by assuming that the cavity is very large compared to the waveleng

4.20 Entropy of one phonon state. From egs. (4.14) and (4.40), show that the entropy, .

s, of one phonon state having a frequency © obeys the following relationship:

ho w"‘BT_a_s_
—T—f()(l + fo) = _—h_ dw

Where fp is the Bose-Einstein distribution.

5

Energy Transfer by Waves

The wave-particle duality of matter from quantum mechanics implies that energy carriers

have both waye and particle characteristics. One way to think about this duality is that
material waves are granular rather than continuous. For example, a phonon wave at

frequency v contains a discrete number of identical waves, each having an energy jiv.

A fundamental erty of waves is.their phase information. A coherent wave has a
fixed relationship between two points in space or at two different times. Due to the fixed

—————————r

3 phase relationship, the superposition of waves from the same source creates interference.
- and diffraction phenomena that are familiar in optics.

1 The wave characteristics of matter (electrons, phonons, and photons) are important
for transport proces interfa di We have seen in previous

- chapters that the size effects on energy quantization can be considered as a result of
the formation of standing waves. In this chapter, we will discuss the reflection of

“waves at a single interface, and interference and tunneling phenomena in thin films
Jand multilayers. We will make parallel presentations for three major energy carriers:
and phonons We have discussed rather extensively in chapters 2
and 3 the electron waves based on the Schrddinger equation. Optical wave effects are
readily observable and can be understood from classical electrodynamics based on the
Maxwell equations, which will be reviewed in this chapter. For phonons, we will adapt

* dynamics method we used in chapter 3. The acoustic-wave-based approach allows us to
treat phonons in parallel with electrons and photons: We will see that wave reflection,
interference, and tunneling phenomena can occur for all three types of carriers and the
descriptions of these phenomena are also similar (table 1.4), despite the differences in

their statistical behavior, dispersion, and origin (table 1.3), as we discussed in previous

159

Continuum approach based on the acoustic waves, rather than on the discrete lattice -
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gy for understanding: 1der3t1ca1‘to €q. (5.2) and we thus expect that the solution to a physical probl 3

the imaginary pz.lrt of the complex variables used in solving the gOVerniﬂ em _W111 be
~In the fpllowmg sections, we will examine three types of waves: the geleqltlatlons.
as a material waves, the electromagnetic wave governing the radiation tran:t?e:o:n‘:iwtll‘l,:

_acoustic wave representing lattice vibration.

chapters. Readers familiar with any of these waves can use the analo

the other waves.

For macroscale_transport processes, howeve
material waves. Rather, we treat the entities as
s0? Section 5.6 answers these questions and briefly discusses transport

coherent regime.

r, we seldom consider the phase of

particles. Why and when can we do’
in the partially

o

5.1.1 Plane Electron Waves

I;ll clllrafter 2,dwe dealt ex_tensively with electron waves in planar geometries such as free
electrons an electrons in a potential well. The wavefunction of a plane éie tr
propagating along the positive x-direction is ‘ o

5.1 Plane Waves

When throwing a stone into water, one can observe a concentric wave propagating:

outward. Television antennas emit electromagnetic waves that are approximately

spherical. Rather than considering these nonplanar waves, we will carry out most of
our discussion in this chapter on the basis of plane waves, although the phenomena to

be discussed also exist for other forms of waves such as the cylindrical or spherical
waves. A plane wave is one i at e ndicul

the direction of propagation at any fixed time. These waves must satisfy the equation
governing their motion. Later, we will discuss these governing equations, such as the
Maxwell equations for electromagnetic waves. Before getting into these details, lets firs
examine some common forms of plane waves. For example, in chapter 2, we showed

that the wavefunction of a free electron is [eq. (2.34)]

V(x,t) = Aexpl—i(ot —kx)] 64

From the Schrodinger equation, we obtai i :
0t . tained in ch i i i
relation between the electron energy E and waver\lle?:t(?f ;cel' -4

g 2 E=U)
72 3 (5.5)

where U is the electrostatic potential. Thi i
from [eq. (2.31)]: potential. The particle current (or flux) can be calculated

W(x,t) = Ale—i(ﬁ)t—kx) +Aze—i(w_t+kx) G \

1) N i . . -
J= —(UVw* —p* . ik

in the positive x-direction an o VI) =Re| —WVI*| s - (56)

where the first term represents a plane wave traveling
because the 2

the second term in the negative x-direction. These are SC

wavefunction is a scalar. Other waves, such as the electromagn etic field, are vecto

waves because the electric/magnetic fields have directions. We can express a harmonic
vector plane wave propagating in three-dimensional space as

F(t 1) =@m<¢t —Kker) (5.2

where A re ion of the field (e.g., electric, magnetic, 0
atomic displaccmcnt), e is the angular frequency, k [with components (kx, ky, k)]
the wavevector representing the direction of wave propagation and its spatial periodicil
(Ik] = 27/A), and r is the spatial coordinate. Equation (5.2) is a plane wave because all
the points r satisfying ke = constant form a plane perpendicular to the wavevect
k, and the field F is a constant on this plane at any given time.
Very often, it is much more convenient to use the complex representation rather than
the sine and cosine representation for the waves. For example, instead of eq. (5.2), we

can write F as

As we will see later, this flux ion is simi
2 expression is similar to the Poyntin
the energy flux of electromagnetic and acoustic waves. e

'. ; 5.1.2 Plane Electromagnetic Waves

In thi . =%
o elesc tsrt(e)ctlon, vs(e will mtroduce‘ the Maxwell equations that govern the propagatio
oo ttlirxal%/rlletlc waves. We will show that a plane wave of the form of qu(S 31)1
s the Maxwell equations and di of £

i i iscuss how to calculate the energy flux of the

.. An electro tic_wave i i ]

+ An electromagnetic wave in_vacuum is characterized ic_fie

1 =i e : ized by an electric field

‘Ei'iclfr Em V m ],.and a magnetic field vector H [Cm~! 57! = Am™!] Whl:lczﬁr

'jmjc ﬁclssglgnciﬁeld 1ntcract.s with a medium, under the force of the e!ectri(': and maa;

E[ectmns andeiz :cm:ms and ;t(:ns of the atoms in the medium are set into motion. These

: s generate their own electric and magneti i :
s : gnetic fields that influence each

_ﬁegaﬁvli ;:': trs:nms oﬁ@n ::a(;:l ontodthc external fields. For example, the positive ions zrid

ative m under an external field will be def igi

:  C ! : ! ormed from th
quilibrium condition, forming an electrical dipole.* A measure of the cap:lﬁgtg;n:tl‘

the material to res in i
ond to the incomi i i i i
! P coming electric field is the electric polarization per unit

F(t,¥) = Aexp[—i(wt — ke )]

ntation, we resort to either the real part or the

When using such a complex represe
imaginary part of the final solution as the solution of the
whether the initial or boundary conditi
or sine (ima inary part) functions. For example,

A dlpole is a pair of positive ¢ 12 tive charge —!2 Separated b mall distance a. T
P p harge and negal
2 g » Sep: d yas: . The



